1 Introduction

This is a summary of some work I did in December. I'm not sure if it will be
useful in anyway. I began working with two dimensional lattices a;; satisfying

QGi-1)(j—1) Q@i-1)j C(i—1)(j+1)
det @i(j—1) Qjj A(i+1);j =1
A(i+1)(j—1)  QGi+1)j O(+1)(j+1)

for all 4, j. (This was a problem that Prof. Propp had mentioned to me.)
Assume that the a;; are given for i4+j = —1, 0, 1 or 2 are given for all i, so the
other a;j are rational functions in this infinite family of variables.

In the first section, I show that the a;; are Laurent polynomials in the a;;,
i+ j = 0or 1 and in the two by two minors a(;_1);@i(j+1) — @ijai—1)(j+1)>
i+ 7 = 0or 1. The way this works is that I introduce a new indexing sytem
where

bits)(i—s) = @ij
and
bits)(i-j-1) = Q-1)ji(j+1) ~ QijQ-1)(j+1)-
(We can tell which formula to use by whether 7 and j have the same or opposite
parities.) We show that we have

br(i+1)br—1) = bk—1)tbka1) + b

for all £ and [. Our claim is then that, if were are given the bgo and the by,
the other by; are Laurent polynomials in terms of them. We show that this
holds and moreover that each by, is relatively prime to its eight neighbors and is
irreducible. Unlike in some previous cases, however, although they are relatively
prime they do not generate the ideal 1, which means this property may not be
preserved when we take some particular initial values.

As I did not have much luck understanding these objects combinatorially, I
decided to switch to the special case brg = x, br1 = y for all k. (One should note
that this is a very unnatural special case, in terms of the original interpretation
of 3 x 3 matrices of determinant 1.) This is then the one dimensional recurrence

bl+1bl71 = blz =+ bl, bo = T, by = Y
If we define a sequence ¢; to be such that
by = ccry

we get that
C43¢ — C42¢4+1 = 1.
This is a recurrence that Gregg has been looking at. Starting with ones, the

first few values are
1,1,1,2,3,7,11,26,41,97,...



Letting T5,, be the number of tilings of a 3 x 2n rectangle with dominos, I show
that these numbers are

To + T Ty + Ty T, +Ts Ts + Ty
2 7T47 2 7T67 2 PR

via a bijective proof. The proof is irritating however in that I don’t precisely
get a bijection between the ordered pairs of tilings involced. Most are directly
paired off, but at the end I have some exceptions on each sde (a small number,
but unbounded). I show there are the same number of exceptions, but not in a
way that gives a canonical pairing.

2 Laurentness

We first verify that the bg; do indeed obey the recurrence

br+1)br—1) = bk—1)1b(k+1)1 + bkt

when the a;; have the determinant property. When k # | mod 2, this is the
definition of the bs. When k =1 mod 2, we are being asked to show that

(a(i-1)(j-1)@ij — (i-1)j0i(j—1)) (@55 A3i+1) (j+1) — Gi(j+1) B(i+1)]) —
(@(i-1)Qi(j+1) = A(i—1)(j+1)%i5) (@i 1) A(i+1); — GijO(it1)(j—1)) = Gij-

It is easy to verify that the left hand side is

A(i-1)(j—1) GG-1)j A>i-1)(j+1)
agjdet | a1 aij a(i41)j
Ai+1)(j—1)  Q@i+1)j  O(i41)(j+1)

which by hypothesis is a;;. (This is a special case of Dodgson condensation, for
those who know it.)

So, we are considering an infinite grid in which we are given the first two
rows and compute the rest by, for any five entries arranged as below,

A
B C D
E

we have
BC+ D

A

We now prove that all the by, are Lauernt polynomials in by; and by;. We do
this by proving the sollowing stronger result by induction on [

E =

Theorem 1. Forl > 2 and any k, we have

1. by is a Laurent polynomial in the by and by;.



2. If blm appears in by thenl —k+1<m<k+1—-1.

3. Each of byj—r41) and by(ryi—1) appear linearly in by with coefficeients of
bk—1)(1+1)/bo(i—k+2) and br_1)a—1)/bo(k+i1—-2) Tespectively.

4. The by, are nonzero.

5. The by are all distinct.

6. The by are irreducible. (In the ring of Laurent polynomials in the by; and
bll .)

Proof. This theorem may be checked by hand for [ < 4 so we assume it is
greater. Suppose we have proven the theorem for [ — 1 and are now working on
l. Let M = by; and label the other relevant variables as below:

A
B C D
E F G H I
J K L
M

Let w = bO(l—k+2)7 Tr = bO(l+k—2)7 Yy = bl(l—k+1) and z = bl(l+k—1)- That is

w e :U
Yy z
(1) We have
v JL+K _ (EGEE) (GIAH) 4 FHAG

G

Rearranging this gives

EGI+ FI+EH n 1 n FHC + BDFH
BD C BDCG

The last term is
FH(BD +C) AFH

BDC(BD + C)JA _ BDC’

So we can write M as a ratio of Laurent polynomials with denominator G
and also as a ratio of Laurent polynomials with denominator BDC. As G, B,
C and D are distinct and irreducible (by induction), and the ring of Laurent
polynmoials is a unique factorization domain, M must be a Laurent polynomial.

(2) If m does not lie in the given range, by induction it will not appear in
J, K, L or G. Thus it will not appear in M.




(3) Applying the induction hypothesis, the bottom part of the diagram wan
be written

G
y(Glw)+Jo K 2(G/z)+ Lo
M

where y and z do not appear in G, K, Jy or Lg. So we get
M = yz(G/wz) + 2(Jo/z) + y(Lo/w) + (JoLo + K)/G
The last term does not contain a y or a z so the coefficients of y and z are
2Gjwz + Lo/w = L/w and yGJwz + Jo/z = J/x

respectively, as claimed. These coefficients are nonzero by part (5).

4 By induction, G # 0. Then by the above formula, the coefficient of yz is
not zero.

(5) Let m and n be minimal and maximal respectively such that b;,, and
b1, appear in bg;. Then, by parts (2) and (3), k and [ can be recovered uniquely
as

k=(n-m)/2+1, 1= (m+n)/2.

(6) We can write P = ayz + by + ¢z + d where y and 2z do not appear in
lower case letter from the begigining of the alphabet. If P factors, it must factor
either as e(fyz+ gy + hz+1) or as (ey+ f)(gz+ h). In the first case, this would
imply that a, b, ¢ and d have a nontrivial common factor. But az + b = L/w
and cz + d = J/z, which are different irreducibles, so this is a contradiction.
(Remember that w, z, y and z are units.) If the second option holds, we should
have ad — bc = 0, but in fact

ad — bc = (G/wz)(JoLo + K)/G — (Jo/x)(Lo /w) =
(JoLo + K)/(wz) — (JoLo)/(wz) = K/(wz).

By part (4), K # 0. O

3 The One Dimensional Case

We now consider what happens when all the by; are equal, say to = and all the
by are equal, say to y. Then by; is independent of &, call it b;. We get
bl2 + b

b =
141 bt

Define a sequence ¢; by b; = ¢;jci+1 and choosing some initial value for ¢g. There
is obviously some ambiguity as to the best choice of ¢g. We get

(cry2ci1)(ce-1) = (ap1a)® + e



or
Ci420-1 — cip1¢ = 1.

Now, we can chose ¢y freely. The normalization which seems to have the
nicest effect is to choose ¢ such that ¢y + c2 = 2¢;. This has the nice property
that we can prove inductively that it implies inductively that coj+coi42 = 2¢9741.
Thus, we can set d; = co; and get the new recurrences

dipr(di +di1)/2 = (dipr + &) /2di =2 & dppadyy =df +2 (1)
(dig1 +d)/2d1—1 —di(dy +di—1)/2=2 & dijadi—1 = d12 + 2 (2)

Set dy = x, di = y. The first several d; are

dy = zy° (3)
di = 2% (4)
dy = 'y 42010 (5)
ds = 22% ' +dx%y 7t A%yt 4272y (6)
di = 120730 + 427190 + 823y 2 + 87ty + 22"y + 6y 23 + y'z(P)

4 Domino tilings and the d;

If we set x = y = 1, the initial d; are 1,1,3,11,41,153, ..., exactly the number
of ways to tile a 3 x (2¢ — 2) rectangle by dominos. The purpose of this section
is to give a combinatorial proof that the number of tilings of a rectangle of this
form obeys the recurrence of the d;.

Theorem 2. : Let A, be the number of ways to tile a 3 x (2n) rectanlge by
dominos. Then
An—lAn+1 = Ai + 2.

Proof. We will draw our tilings as matchings of grid graphes. Consider a 3 x
2(n + 1) grid. To every pair of matchings of the 3 x 2n grid, assosciate a graph
on the 3 x 2(n + 1) grid by superimposing the two matchings, alligning one
with the left and the other with the right of the grid and counting edges with
multiplicity. Similarly, given a pair of one matching of the 3 x 2(n + 1) grid and
one of the 3 x 2(n — 1) grid, superimpose them with the 3 x 2(n — 1) centered.
We want to show that we get two more graphes the second way than the first.
Given a graph, we will say that we have found an LR decomposition (left-right)
of it if we write it as a superposition of two graphes in the first way and an NW
(narrow-wide) decomposition if we write it in the second way.
Write our grid as

A B x --- x U V
¢ D x --- x W X
E F x --- x 'Y Z

In every case we get a graph (possibly with multiple edges) in which the lettered
vertices have degree 2. Thus, it is a union of cycles and pathes, where the



endpoints of the pathes are letters. We will call a path short if it connects
letters from the same end of the alphabet and long else. Only B, D, F, U, W
and Y can be endpoints of long pathes. Clearly, the number of long pathes is
even. Morevoer, if we color the grid in a checker board, there must be an equal
number of black and white endpoints of long pathes, both on the left and right
hand side. Putting these restirictions together, we see there are three cases:

Case 1. There are no long paths. We claim that such a graph has equally many
LR and NW decompositions.

For each edge, we must decide which of the two graphes being superimposed
to put it into. For each cycle of length > 2, we may choose one edge in it
arbitrarily. For each short path, the final edges placement is forced and that
forces the rest of the allocation of the edges of the path. So the number of
decompositions is 2 rasied to the power of the number of cycles longer than
length 2, which is independent of whether we are looking at LR decompositions
or NW decompositions.

Case 2. There are two long paths: joining either (B <> U,D < W) or (D «
W,F < Y). Then there is exactly one NW necomposition of this graph and no
LR decomposition.

There is no room for any cycles except length 2 cycles. Each edge in a length
two cycle must appear in both graphs of any decomposition. We can determine
the decomposition of the long paths by putting the edges with endpoints in the
left lettered columns in the correct graph. This gives us a unique decomposition,
we must show that the right final edges long paths lie in the same decomposition
as the left final edges. This is easy: by looking at the checker board coloring,
the long pathes have an odd number of edges. This means the two final edges
must lie in the same half of the decomposition.

Case 3. There are two long paths. They join either (B & W,D + Y) or
(D & U,F & W). In this case, there is one LR decomposition and no NW
decomposition.

Similar to the previous case.

So, we are reduced to showing that the number of routings pairing (B «
U,D+ W) or (D« W,F < Y) is two more than the number pairing (B «
W,D +Y) or (D« U,F + W). Consider such a routing. We will call a pair
of adjacent columns a switch if the top and bottom lines between them are in
the routing, that is, it looks like

* = %

(There will also, of course, be some vertical edges in the routing.) The impor-
tance of switches is that if we reflect all of the routing to the right of a seitch
over a horizontal line, we will get another routing, and of the opposite type as



before. Thus, if we group all routings into equivalence classes under this reflec-
tion operation, each class will contribute equally often to Case 2 and Case 3,
except the classes where there are no switches. THere are two routing without
switches,

¥ — ok — ok ... X — %
*
and
*
p— p— * —
p— p— * J—
Each of these lies in class 2, so we are done. O



