1 Introduction and Terminology

In rough sketch, the main object of this paper is a function f defined on a three dimensional lattice by
a certain recurrence. We denote the set of initial conditions from which f is generated by Z and consider
varying the shape of 7 inside this lattice. It turns out that the values f are Laurent polynomials in the initial
variables where every term has coefficient 1. We are able further more to find families of graphs such that
f gives generating functions for the perfect matchings of these graphs. Special cases of this result include
being able to choose 7 so that f gives us the values of three term Gale-Robinson seqeunces or such that the
families of graphs are Aztec Diamonds, Fortresses and other common families of graphs with simple formulas
for the number of their matchings.

In the next subsection, we introduce the vocabularly necesary to define f. In the following section, we
introduce the vocabularly necessary to define the families of graphs.

1.1 The Recurrence

Set
L={(n,i,j) €Z> n=i+j mod 2}
and set
£ = {(i,5,?) €2 x{a,b,c,d}, i+j=1 mod 2}
F o= {(,j) € 2%
where ? denotes one of the four symbols a, b, ¢ and d.
We call (i1,j1) and (i2,72) € F “lattice-adjacent” if |(iy — i2)| + [(j1 — j2)| = 1. (Another notion of

adjacency will arise later.)
For (n,i,7) € L, let C(,; j) be the set of (n',4',j') € L such that

n+i>n'+i,n—i>n"'—i,n+ji>n'+j57 andn—j>n' —j.
Let Cv'(n,i,j) be the set of (n',4', ;') € L such that
n+i>n' +i,n—i>n" -, n+ji>n+j5 andn—-j>n"—j"

Let 0C = C\é’ We will call C, C and 8C the “cone”, “inner cone” and “outer cone” of (n, 1, j) respectively.
Let h: F — Z and define

Z = {(@,4,n)€ L, n=h(i,j))}
U = {(@Ej,n) €L, n>h(i,j}

Assume that

1. |h(i1,71) — h(iz, j2)| = 1 if (i1, j1) and (i2,j2) are lattice-adjacent.

2. (h(i,5),i,5) € L.

3. For any (n,i,j) € £, C(n,i,j) NU is finite.

Let K be the field of formal rational functions in the following infinite families of variables: the family
x(i, ), i, j € Z? and the families a(i, 5), b(i, ), c(4, j), d(i,j) where i, j € Z?and i+ j = 0 mod 2. (Clearly,
F indexes the z’s and € indexes the a’s, b’s, ¢’s and d’s. Let R C K be the ring

Zlx(i, 5),1/2(i, §), a(i, 5), b(i, ), c(i, §), d(i, 5)]-

For reasons to appear later, we call the z’s the “face variables” and the a’s, b’s, ¢’s and d’s the “edge
variables.”
We define a function f: ZUU — K f(n,i,j) = z(i,7) for (n,i,j) € Z and
f(nazaj) = (a(2 +n— 1;])6(2 —-n+ 1aj)f(n - ]-;Z.;j + l)f(n - ]-aiaj - 1)+
for (n,1,j) € U. Our third condition on h makes sure that this recurrence will terminate.
The main result of this paper is



The Main Theorem (First Statement). f(n,i,j) € R and, when written as a Laurent polynomial, each
term appears with coefficient 1. Moreover, the exponent of each face variable is between —1 and 3 (inclusive)
and the exponent of each edge variable is 0 or 1.

To describe our result more precisely, we need to introduce some graph-theoretic terminology.

1.2 Graphs With Open Faces

Let Gy be a connected finite planar graph with a specified embedding in the plane and let ey, es, ... e, be
the edges of the outer face in cyclic order. (We write an edge twice if it occurs twice.) We define a “graph
with open faces” to be such a graph G with a given partition of the cycle eq, ... e, into edge disjoint paths
€i, €it1, - .. €;. (If an edge appears twice, it appears in two such paths, or else twice in one.)

Denote by G the graph with open faces associated to G and the partition above. We call a path e, ...
e; in the given partition an “open face” of G. We denote the open faces of G by F,,(G). We refer an interior
face of G as a “closed face” of G and denote the set of them by F.(G). We set F(G) = F,(G) U F.(G) and
call a member of F(G) a face of G. Note that the exterior face of Gq is not a face of G.

We will refer to an edge or vertex of Gy as an edge or vertex (respectively) of G. We say that an edge
e borders an open face f of G if e lies in the associated path e;, ... e;. All other incidence terminology
(endpoint, adjacency of faces, etc.) should be intuitive by analogy to ordinary planar graphs. We use E(G)
and V(G) to denote the edges and vertices of G.

The image associated to a graph with open faces is that open disks have had portions of their boundary
glued to the outside of G along the paths e;, ... e; with some additional boundary left hanging off into
space. We will draw graphs with open faces as shown below

By a map G' — G we mean a triple of injections V(G') = V(G), E(G') — E(G) and F(G') — F(G)
compatible with the adjacency relations. We say G’ is a sub-graph with open faces if such a map exists.

A matching of a graph with open faces G is a collection of edges M such that every vertex lies on exactly
one edge of M. Let R(G) be the ring Z[z,1/zy,ye] where xy are formal variables indexed by f € F(G) and
ye are formal variables indexed by e € E(G).

For e € E(G), set d(e) = 1if e € M, 0 otherwise. For f € F(G) and M a matching of G, let a be the
number of edges of f that lie M and b the number of edges of f not in M. If f € F.(G), set

an =5 -

if f € f,(G) set

(Note that €(f) > —1.)
For any matching M, set

m(M) = [[ T] 27
e f



For any graph with open faces G, set

m(G) =Y m(M)

where the sum is over all matchings of G. We call m(M) the matching monomial of M and m(G) the
matching polynomial of G.

It will turn out that the actual graphs to which we will apply this definition are bipartite, so every closed
face has an even number of edges and we may omit the [ ] in this case. However, it will be convenient to
have a definition that is valid for all graphs.

We can now give our second statement of the Main Theorem.

The Main Theorem (Second Statement). For any h subject to the conditions above and any (n,i,j) €
U, we can find a graph with open faces G, a decomposition E(G) = E,, U E, and injective maps o.: B,y — &,
a: F — F such that, if we define a: R(G) = R by a(zy) = z(a(f)) for f € F(G), aly.) =?(i,j) where
ale) = (i,4,7) for e € Ey and a(ye) =1 for e € E,, then

f(n,4,7) = a(m(G)).

Clearly, this will imply the previous statement, except for the bounds on the exponents and the claim
that the coefficients are 1. The first will follow by showing as well that every closed face of G has < 8 edges,
and each open face of G has < 2 edges. The second will follow by showing that the edges of E,, are vertex
disjoint, so a matching M is uniquely determined by M N E,,.

1.3 History

One case of this was known explicitly prior to this paper: if h(i,5) =0 for i + j =0 mod 2 and h(i,j) =1
for i+j =1 mod 2 then we have replicated the theory of condensation of Aztec Diamond matchings [Kuo].
Jim Propp in [Propp] noted that a special case of the theorem (with many of the variables set equal to 1)
would imply the (three term) Gale-Robinson theorem:

The Gale-Robinson Theorem. Given positive integers k, a and b with a, b < k, define a sequence of
rational numbers by S, by

SnSn—k = Snfasn7k+a + Snfbsn7k+b n>k
and Sg = Sz = --- = Sg—1 = 1. Then the S, are all positive integers.

Note that the cases (k,a,b) = (4,1,2) and (5,1,2) are the fourth and fifth Somos sequence. No combi-
natorial proof of the Gale-Robinson theorem has previously been found, even for these small cases.

Propp computed f(n,%,j) for the Somos-4 and Somos-5 case and conjectured essentially our first state-
ment of the Main Theorem in this case. (Propp’s recurrence is related to ours by applying various linear
changes of variable and combining all of the edge variables into a single family y(¢, j).) Propp also conjec-
tured that the terms of f(n,i,j) would be in bijection with the matchings of a graph, with the z’s related
in some manner to the faces and the y’s (our a’s, b’s, ¢’s and d's) related to the edges.

It is also also already known at least implicitly that the f(n,i,j) lie in the ring R, but not that their
coeflicients are 1 or even that they are positive; nor that any combinatorial significance could be attached
to them. This has been proven using the method of Cluster Algebra’s [FumZel] and was used to deduce the
Gale-Robinson theorem above.

1.4 Plan of the Paper

In Section 2, we will describe explicitly an algorithm we refer to as “the method of crosses and wrenches”
for finding the graphs G. We will postpone proving the correctness of the algorithm to present applications
of the theory in Section 3. In particular, we will carry out the examples of Somos-4 and Somos-5 and show
explicitly the families of graphs associated to them; we will also do the early steps of the computation for
the general Gale-Robinson theorem. We will also show that, by choosing certain periodic functions for A,
we can create fortress graphs [Fort] and families of graphs studied by Chris Douglass [Doug] and Matt Blum



[Blum]. The number of matchings of these graphs are powers of 5, 2 and 3 respectively, in each case we will
give a rapid proof of this by induction from our Main Theorem.

In the Section 4, we will give a proof that works by varying Z and holding (n,,j) fixed. In the process,
we will recover variants of the “Urban Renewal” operations of [Ciciu] and thus motivate his definitions. In
Section 5, we will give a second proof, inspired by a proof of [Kuo] for the Aztec Diamond case, that works
by holding 7 fixed and varying (n,,j). We will here present a variation of Kuo’s condensation result that
has proven very useful.

1.5 A Note on Simplification of Results

One might wonder whether one could remove some of the complications of the statements of the theorems
by setting some of the variables equal to 1. We could with no harm set the edge variables to 1 throughout
this paper. We could also set the face variables equal to 1 as well, except for one place: our first proof of
the Main Theorem is inductive and can introduce cases where the face variables are not 1 even if they all
start as 1. (Of course, if we set both sets of variables equal to 1, the polynomials would collapse to integers,
so the claim that all coefficients are 1 would become false.)

2 The Method of “Crosses and Wrenches”

In this section we describe how to find the graph G discussed above. We perform no examples here as there
will be many in Section 3.

2.1 An Infinite Graph in Which our Graphs Embed

Let h(i,j) be as defined in the previous section. We will associate to h(i,j) an infinite planar graph G,
inside which all of our graphs with open faces for the f(n,4,j) will be embedded. The faces of G will be
indexed by the elements (n, i, j) of Z, centered at the corresponding points (4, j) in R2. If (i, j1) and (ia, j2)
are lattice-adjacent (i.e. |[(i1 —i2) — (j1 — j2)| = 1) then (ni,41,j2) borders (ng,is,j2). In addition, if
|ix — 2| = |j1 — j2| = 1 then (n1,41,71) borders (na, iz, j2) iff h(i1,j2) # h(i2,j1). No other pairs of faces
border.

We refer to this method of finding G as the “method of crosses and wrenches” because it can be describe
geometrically by the following procedure: any quadruple of values

h(i, ) h(i+1,7)
(h(i,j+ 1) h(i+1,j+ 1)>

must be of one of the following six types:

h h+1 h+1 h h h+1
h+1 h h h+1 h+1 h+2
h+2 h+1 h+1 h h+1 h+2
h+1 h h+2 h+1 h  h+1

In the center of these squares, we draw a + , " .or - in the first and second, third and fourth, and
fifth and sixth cases respectively.

h h+1 h+1 h h h+1
- - gy

h+1 h h h+1 h+1 h+2

h+2 h+1 h+1 h h+1 h+2

h+1 h h+2 h+1 h h+1

We then connect the four points protruding from these symbols by horizontal and vertical edges. (We
often have to bend the edges slightly to make this work. Kinks introduced in this way are not meant to be
vertices, all the vertices come from the center of a + or from the two vertices at the center of a - ~or r)



2.2 Labelling the Edges

We now describe how to assign the members (i, 7,7) of £ to the edges of G. The middle edge of a wrench
will not receive a label (these are the E,, from our second statement of the Main Theorem). The horizontal
and vertical edges are the edges that will be labeled with members of £. Such an edge lies between two faces
(1,11, 1) and (na,i2, j2) with |i; —ia|+ |j1 — j2| = 1. Let the edge separating them receive the label (i, j, 7).
WLOG, (i1 —i2) + (j1 — j2) = 1. (Otherwise, switch the names of (i1,71) and (i2,j2).) There are four cases:

1. If 47 > i5 and ny; > ny then (i,],?) (Zl +n2,j1,a) (12+n1,j2,a).
2. If i1 > iy and ny < ng then (7:,.7,?) )

(i1 — n2, j1,¢) = (i2 — ny, j2, ).

3. If j1 > j2 and ny > ng then (i,4,7) = (i1, J1 + n2,b) = (i2, j2 + n1,b).

)
)=

IN

. If j1 > j2 and ny < ma then (i,5,7 (i1, j1 — na,a) = (i2,j2 — n1,d).

A geometrical description of this rule will be given in Section 2.5.

2.3 Finding the Graphs

Finally, we must describe the sub-graph with open faces G of G that corresponds to a particular (n,z, 7)-
Recall C(,,; 5 and C’(" i,j)» the cone and inner cone of (n, i, ), which we will abbreviate to C' and C in this

paragraph. The closed faces of G will be CNZ. The edges of G will be the edges of G adjacent to some
face in ZN G. The open faces of G will be those members of Z some but not all of whose edges are edges of
G. Note that every open face of G lies in dC N Z but the converse does not necessarily hold. Note also that
there are never any edges that separate two open faces; even if those two open faces are lattice-adjacent.

2.4 The Main Theorem

We can now give the final statement of our Main Theorem.

The Main Theorem. For a given h obeying the conditions of the previous section and (n,i,5) € U, form
a graph G according to the algorithm in this section. Define a: F(G) — F by (n,i,5) — (i,7). Define
E,(G) to be the horizontal and vertical edges of G and E,(G) to be the edges that come from the middle of
wrenches. Define a: E,(G) — & by the recipe of Subsection 2.2. Then the Second Statement of the Main
Theorem holds with respect to this G and «.

2.5 Some Basic Facts

It is easy to check that every closed face has 4, 6 or 8 sides. Hence the graph G is bipartite. Moreover, in
particular, every closed face has < 8 edges, as promised above. It is also easy to fulfill another promise and
check that the unweighted edges are vertex disjoint.

Suppose (for contradiction) an open face f = (n,4,j) had more than two edges. Let fi = (n1,41,7),
f2 = (na,i2,j2) and f3 = (ns,is3,j3) be three consecutive such faces.

If fi and f3 are lattice-adjacent to f then, as f borders fo we have ny # nz. WLOG, n3 = n; + 2 and
then n = ny =ny + 1.



-7 nl

! nl+1

I nl+1

nl+2

Let 6, € = £1, then, for any choice of § and €, n+ di + €j equals either ny + i1 + €j1 or ng + dis +€j3. As
the inner cone C is cut out by equations of this sort, and (ny,i1,71) and (ns, s, j3) are both in C, (n,i, )
is also in C'. Thus f is a closed face, not an open one.

Similarly, if fs is lattice adjacent to f, then n = n; = ng and WLOG i =i1+1 =1i3+1,j =j1—1 = jz+1.
The same observation applies.

So we conclude each open face has < 2 edges.

It is clear that each member of F is assigned to exactly one face. We show the same for £. Consider
e = (49, jo,a) € &, the cases of b, ¢ and d are extremely similar. e must be between two faces of the form
(n,io—n—1,jo) and (n+1,49—n, jo). Draw the plane of values of (n, ) such that (n,4,j) € £, the members
of 7 in this plane form a path. Two vertices of this path correspond to faces separated by e iff they lie on
opposite sides of the line ¢ + n = i9. As this line is of slope —1, the path cannot be steep enough to cross it
more than once. If the path never crosses it, then C(n,i,jo) N U is infinite when we take (n,%) to lie above
the line.



i+n=i0

This is the promised geometric interpretation of the edge labeling.

2.6 Infinite Completions

In this section, we introduce an alternative way of viewing f(n,,j) as counting the number of matchings
of an infinite graph, subject to a “condition at infinity” to be described later. This means that a priori
f(n,i,7) could contain an infinite number of terms, although in fact it will not, and describing the terms of
f(n,i,7) requires an a priori infinite amount of information. On the other hand, this new method will no
longer require the use of open faces and will remove the need to treat faces in the boundary as a special case
in our proof. We will thus use this interpretation in proving our results.

Thus, let h(, j) be as before. Fix a triple (no, g, jo) € U, we will be interested in f(ny, o, jo). Let G be
the graph with open faces assosciated to (ng, %o, jo). Set

h(7’7.7) = min(h(i,j),no + (7' - Z'0)7"7‘O + (.7 - .70))

(There are five terms inside the min.) We have h(i,j) = i + j mod 2 and |h(i,j) — h(i',j")| = 1 for
(i,5) and (', ;') lattice adjacent. We can thus use the method of crosses and wrenches to assosciate an
infinite graph G to h. G is a sub-graph with open faces of G. Upon removing G, what remains looks like



There is a unique matching (indicated in thick lines) of G'\ G given by taking the middle edge of every
wrench. Call this matching M. Clearly, matchings of G that coincide with M outside of G are in bijection
with mathcings of G. Moreover, one can easily check that the face exponents assosciated to a given matching
of G are the same as for the corresponding matching of G, including that the exponent of any face of G that
does not correspond to a face of G is 0.

We claim that the following, less obvious result also holds:

Proposition 1. Let M' be a matching of G in which all but finitely many vertices are matched to the same
verter as in M. (M is a matching of G\ G, so for all but finitely may vertices of G' this makes sense.) Then
M' coincides with M everywhere on G \ G.

Proof. Suppose the opposite. All the vertices of G\ G come from wrenches. Each wrench has one of it’s
vertices closer to (g, jo) than the other; call these the near and far vertex of the wrench. Now, suppose the
theorem is false. Of the finite number of vertices of G \ G not matched as in M, let v be the furthest from
(0, 70)- We derive a contradiction in the two possible cases.

Case 1: v is a near vertex. Then the far vertex w in the same wrench as v is matched as in M. But w is
matched with v in M, so w is matched with v and v is mathced as in M.

Case 2: w is a far vertex. But all of v’s neighbors except the one it is matched to in M are farther from
(i0, jo) than v is, so they are matched as in M and can not be matched to v. O

As result, we can give yet another statement of the Main Theorem. It is in this form that we shall prove
the main theorem in section 4.

The Main Theorem (Using Infinite Completions). Let h be as above and let (no,io,jo) € U. Let h
be given as above and let G be the inifnite graph assosciated to h. All but finitely many vertices of G come



from wrenches. f(ng,io,jo) is the sum over all matchings of G in which all but finitely many vertices are
paired with the vertex at the other end of a wrench of the monomials assosciated to those matchings.

3 Applications

3.1 Aztec Diamonds

We begin with an example that has already been done: the Aztec Diamond graphs. In this case, h(i,j) =0
or —1 when i 4+ j mod 2 is 0 or 1 respectively. In this case, every square of four values is

0 -1 -1 0
-1 0 0 -1

so in every case we get a cross.

1+
e+t
e+t
1+

The infinite graph G is just the regular square grid. We now determine the edge labeling. Consider the edge
separating the faces (i1, 71) and (i2,j2) and WLOG take i1 + j1 = 0 mod 2. Let the edge between them be
(4,5), we must have (4,5) = (i1 £0,j1) or (i,j) = (i1,j1 £0). So (i, 5) = (i1, 1)

b(0,3) d(1,4) b(2,3) d(3,4)
x(-1,0,3) x(0,1,3) x(-1,2,3) x(0,3,3)
c(0,3) a0,3) a(2,3) c(2,3) c(4,3)
d(0,3) b(1,2) d(2,3) b(3,2)
x(0,0,2) x(-1,1,2) x(0,2,2) x(-1,3,2)
a-1,2) c(1,2) a(1,2) c(3,2) a(3,2)
b(0,1) d(1,2) b(2,1) d(3,2)
x(-1,0,1) x(0,1,1) x(-1,2,1) x(0,3,1)
c(0,1) a(0,1) c(2,1) a(2,1) c(4,1)
d(0,1) b(1,0) d(2,2) b(3,0)
x(0,0,0) x(-1,1,0) x(0,2,0) x(-1,3,0)
a(-1,0) c(1,0) a(1,0) c(3,0) a(3,0)
b(0,-1) d(1,0) b(2,-1) d(3,0)



3.2 Fortresses and Douglass’ and Blum’s Graphs

To obtain a fortress graph, we take

h(i,j)=0 i4+j= 0 mod 2,
= 1 ¢=0 mod2, j=1 mod?2
= -1 ¢=1 mod?2, =0 mod 2.

Every square of values is of the form

]

0 10 -11 0 -1
-1 01 0’0 -1

so in every case we get a wrench, in the repeating pattern

L a L a

J
bl
a
.

J
bl
a
.

Joining up the wrenches, we get

0 0
0 1 0 1 0
0 1 0
0 1 0 1 0
0 0

Set all the edge and face variables equal to 1, so that f(n,?,J) is just the number of matchings of the
associated graph G. For n =0, f(,n,i,j) = 1lforalli+j =0 mod2. If n =1, f(n,i,j) =1fori =20
mod 2 and 2 for i =1 mod2. If n = 2, f(n,i,j) = (I1x1+2x2)/1 =5 Ifn=3, f(nij) equals
(5x5+5x5)/1=50fori =0 mod 2 and (5x5+5x%x5)/2=25fori=1 mod 2. It is now easy to continue
to prove by induction that f(n,i,j) is always a power of 5 or twice a power of 5, the result of [Fort].

Similarly, to get the graphs of [Doug], we take

h(i,j)= 0 i+j= 0 mod 2,
=1 i¢+j= 1 mod4
=—1 i4+j=—-1 mod4.

10



We now sometimes will have
10 -1 0
01

which will produce a cross and sometimes will have

which will produce a T
Overall, we have the repeating pattern

which produces
Similarly, to get the graphs of [Blum], take

h(i,j)= 0 i+j= 0 mod 2,
=1 i+j=1 mod2, j=0,1 mod4
=—1 i4+j=1 mod2, j=2,3 mod4

. We get

TEAr
A

+ +

11
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3.3 The Gale-Robinson Theorem
The Gale-Robinson Theorem states

The Gale-Robinson Theorem. Given positive integers k, a and b with a, b < k, define a sequence of
rational numbers by S, by

SnSn—k = Sn—aSn—k—i-a + Sn—bSn—k—i-b n>k
and Sg = Sy = --- = Sp_1 = 1. Then the S, are all positive integers.

In this section, fix k, a and b and let S,, be the sequence of the theorem. Define a map n: £ — Z by
k
m: (n,d,7) — §(n+i+j) — ai — bj.

Set
T=7""{0,1,2,... ,k—1})

and
U=71 {kk+1,k+2,...})
and define f: ZUU — Z by
f(n7 7'7.7) = Sﬂ(n,i,j)-

Propp observed (in slightly different terminology) that this choice of f(n,1,j), Z , U obeys our recurrence
where we set all the variables equal to 1. (We will often speak of “setting a variable z to 1.” where z is
some member of the ring R. What we mean fromally is that we are now working working in R/(z — 1). If
say that we set several variables 21, ... 2; to 1, then we work in R/(z1 — 1,...,2; — 1).) In this section we
will find the h associated to this choice of 7.

We will first need a notation. If g(4,5) is any function of ¢ and j, define ||g(¢,7)]]| to be the greatest
integer k such that k¥ < g(4,7) and k¥ = i + j mod 2; define [[g(%,7)]] to be the least integer k such that
k>g(i,j) and k =¢+j mod 2. We have

. g(i,5) (G +3 C
o)) =2 | LEDZ Dy )

and
(i,5) £ (i +J)

o, =2 | 2ED S 5 i)

12



where we can take either choice of + (and must take the opposite choice for F.)
h(i,j) should be the unique integer n such that (n,%,7) € £ and 0 < 7w(n,4,5) < k. We can see that
such a unique integer exists because w(n + 2,4,j) = w(n,,7) + k. Let 7 be such that «(7i,4,j) = 0, then

n = [[n]]. Explicitly, we have
2 _k - b—E .
o= c{la-35)i 5 )
— 2_a+2_b — ('_|_ )
- \EF'TR) T
Using the formula for [[ 1] above, we get
a b
=l % bl e
n= [ =2 | fi+ 4] -+

3.4 Somos 4 and 5

Particularly interesting cases of the Gale-Robinson recurrence are (k,a,b) = (4,2,1) and (5,2,1), as these
give Somos-sequences which have connections to theta functions. In these cases, we draw below the infinite
graphs G and the first several G. We have saved space by recording only the value of h(i, j) for a (h(i,7),4,7)
triple and not labeling the edges.

0 1 2 3 2 3 4 5

Somos-4

4 Proof I: Urban Renewal

In this section, we will prove the correctness of the crosses-and-wrenches algorithm. Our basic strategy is to
hold the point (n,%,j) where we are evaluating f(nog, io, jo) fixed, while varying h. Our proof is by induction,
with the base case h(i,7) = min(ng £ (¢ —ig),n0 = (j — jo))- We use the infinite description of our graphs
from section 2.6 so that we do not have to deal with open faces and other effects of the boundary.

4.1 Some Easy Lemmas

Lemma 1. Consider a graph with open faces G. Replace a vertex G with two edges as below to form a new G’

and set the variables associated to those edges to 1.
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Then M (G) = M(G").

Proof. Any matching of the old graph can be transformed to a matching of the new graph uniquely by adding
one of the two new edges. The additional edge in the matching contributes a factor of 1 in the product of
the edge variables. The two faces adjacent to the new edges have one more used edge and one more unused
edge than the corresponding faces of the previous matching, so they have the same exponent. The other
faces are unaffected. O

The Urban Renewal Theorem. Suppose a graph with open faces G contains the sub-graph with open faces
\%

-
9]

a

4 with the indicated edge weights and face weights. (The face weights are
in uppercase, the edge weights in lower case.) Create a new graph G' by replacing this with where

X' = (adWY +bcVZ)/X.

Then m(G) = m(G"). (That is, the matching polynomials are equal.)

This theorem is almost that of [Ciciu]. However, because he doesn’t use face weights, his theorem involves
slightly different replacements and yields a relation of the form m(G) = (ac + bd)m(G").

Proof. We will create a correspondence between matchings of the two graphs. A matching of one graph may
correspond either to one or two matchings of the other. The meaning of the diagrams below is that a matching
of G which contains the edge configuration of the left column corresponds to the matching(s) of G’ obtained by
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making the edge replacements in the right column.

In the first four cases, for any of the four outer faces, the number of used and unused edges each increase
by 1 going from the left to the right column, so its exponent is unchanged. The edges that are used have the
same weights. The center face has one edge adjacent to it and hence does not appear. Thus, the monomial
is the same.

In case 5, the first transformation increases the exponents of W and Y by 1, adds the edges a and d and
changes the contribution of the center face from X to X' - Similarly, the second transformation increases
the exponents of V' and Z by 1, adds the edges b and ¢ and changes the contribution of the center face from
X to X'~'. So this transformation is given by the variable substitution:

-1 -1
x = acvyz' ™ + bdwzz'

The sixth case is practically identical. This time, we want to group the matchings of G that are of this
case and correspond to the same matching of G'. Note that if one matching occurs, the other does. We are
to change the contribution of the center face from X! to X' and either

1. delete edges a and d and reduce the exponents of W and Y by 1 or
2. delete edges b and ¢ and reduce the exponents of V' and Z by 1.
This is accomplished by the substitution
(adWY +bcVZ) Xt = X"

This is exactly the substitution we make. O

4.2 Proof of the Main Theorem

Let (no,%0,j0) € U and let h and h be as in _subsection 2.6; let G be the graph assosciated to h. Let
c(i,j) = min(ng £ (i — io),n0 £ (§ — Jjo)), so h(i,j) = min(j(i, ), c(é,7)). Our proof is by induction on

Ei,j C(l,]) - h(lvj)
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It Y, 5 cli, j)—h(i, j) = 0 then h(i, j) = c(i, j) so G'is
which has only the indicated matching (subject to the requirement that all but finitely many vertices are
matched as required). The matching polynomial of this matching is z(io, jo). We also have in this case that
h(io, jo) = c(io, jo) = no so we have f(no,0,Jo) = (%0, jo)- -

If 32, ; ¢(i,j) — h(i,j) > O then, among the (i, ) for which h(i,j) < c(i, ) there is (at least) one with
h(i,) minimal, let this be (¢,7). We claim that h(i £ 1,5) = h(i,j = 1) = h(i,j) + 1. We deal with the
case of h(i + 1,7), the other four are similar. We have A(i +1,5) = h(i,j) £ 1. If (i + 1,5) = h(3,5) — 1,
then A(i + 1,j) < h(i,j). This is only possible if A(i + 1,j) = ¢(i + 1,7). But we have c(i,j) > h(i,§)
and, as h(i,j) = c(i,j) mod 2,wegetc(i,j) > h(i,j) +2 = h(i + 1,5) + 1+ 2 = c(i + 1,5) + 3.4s—c(i,j)-
c(i+1,j)=1, thisisimpossible.

Thus, we have shown A(i £ 1, ) = h(i,j + 1) = h(i,j) + 1. So the face assosciated to h(i, ) is a square.
Apply the Urban Renewal Theorem to this square to create a new graph with the same matching polynomial.
Then apply Lemma 1 to this graph. The graph thus created will be the same as replacing any crosses whose
vertex lies on the face (4,7) by a wrench with one vertex on (i,j) and vice versa. Also, the edge weights
adjacent to (i,j) are interchanged with their diametric opposites and the weight z(7,j) is replaced by a
certain binomial.

The graph thus produced is precisely the graph produced by the function h' where h'(i,5) = h(i,5) + 2
and h' = h everywhere else. By induction, the matching polynomial of this graph is f(no, %0, jo) for the inital
conditions h'. The f for the initial conditions h is given by replacing z(7, j) by the same binomial as before.
Thus, f(no,%0,jo) is precisely given by the matching polynomial of the graph for h' with x(i,j) replaced by
the said binomial, which by the Urban Renewal Theorem is precisely the matching polynomial of the graph
for h.

O

5 Proof II: Condensation

5.1 The Condensation Theorem

The following is a strengthening of the result of [Kuo]. We some notations. If G is a graph with open faces
and S C V(G), let 9(S) elements of S that border vertices of G not in S. If G is a bipartite graph with
open faces , colored black and white, let 6(.S) be the number of black vertices minus the number of white
vertices. While §(S) is only defined up to sign, we adopt the implicit assumption that, if S; and S a both
subsets of V(G) that §(Si) and §(S2) are computed from the same coloring of G. Let g(5) is the sub-graph
with open faces of G whose vertices are S, whose edges are the edges of G that connect vertices of S and
whose faces are the faces of G' adjacent to such edges. We will only use the notation g(S) in the case where
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the resulting graph with open faces is connected. Abuse notation for writing m(S) to mean m(g(S)).

The Condensation Theorem. Let G be a bipartite graph with open faces (recall that a graph with open
faces is planar) and let the vertices of G be partitioned into nine sets

V(G)=CUNUNEUEUSEUSUSWUWUNW.

Denote by X the set of sets {C,N,NE,E,SE,S,SW, W, NW} Assume that only vertices in the sets joined
in the diagram below border each other. (Vertices may also border other vertices in the same set.) Assume
further that

0(NE) = 6(SW) =1, §(SE) =6(NW) = -1, §(C) =6(N) =6(E) = 4(S) = 6(W).
Finally, assume that O(NE) and 0(SW) are entirely black and O(NW) and O(SE) are entirely white.
DIAGRAM
Then, if we set the face variables equal to 1 we have
m(G)m(C) =m(NUNEUNWUC)m(SUSEUSW UC)m(E)m(W) +
m(EUNE U SE U C)m(W UNW USW U C)m(N)m(S).

where we assume that, for every set 7 of vertices appearing inside an m, g(?) is connected.
For f a face and 7 C V(G), let f(?) denote the number of vertices of f in 7. The theorem remains true
if we do not set x5 equal to 1 when any of the following hold

1. All the vertices of f lie in the same 7 € X.
2. The vertices of f lie in two ?’s, 71 and 72, f(q1) and f(q2) are odd and f is closed.

3. The vertices of f lie in three ?7’s, q1, g2 and g3 such that not all the f(?;) are even, f(C) is even and
f is closed.

(This is not an exhaustive list of cases, it is the smallest one that could be found to apply to all graphs
that will appear in this paper.)

Proof. Let G always denote a graph obeying the above hypotheses. We define a northern join a set 7 of
edges of G which obey any of the following conditions:

1. A path with one endpoint in NE, the other endpoint in NW and the intermediate vertices in C.
2. A single edge with one endpoint in NE and the other in NW.
3. A pair of edges, one joining NE to N and the other joining NW to N.

We define an eastern, southern or western join analogously.

Lemma 1. Let M be a multiset of edges of G such that every member of C lies on two edges of M and
every other vertex lies on a single edge of M. Then we can write M uniquely as a disjoint union

M:71U72LI |_| M?
7eX

where
1. FEither vy is a northern join and vy is a southern join, or vy is a eastern join and v2 is a western join.

2. Mc is a disjoint union of cycles, entirely contained in C. (We count a doubled edge as a cycle of
length 2.)

3. M- is a disjoint union of paths entirely contained in ? for 7€ X, 7 # X.
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Proof. Uniqueness is obvious; we prove existence.

Since every vertex is adjacent to either one or two elements of M, M can be written uniquely as a disjoint
union of cycles and paths. Moreover, the vertices of C are on cycles or are inner vertices of paths and the
vertices of V(@) \ C are the ends of paths. For 7 € X, let M- be the set of connected components of M lying
completely in 7. As M¢ borders every vertex twice or not at all, it is a disjoint union of cycles. Similarly,
the other M- are disjoint unions of edges. Let A be the remaining edges.

Let 7 € X, ? # C. We claim AN? C J(?). This is because if v € 7\ 9(?), then there is a single edge
vw of M containing v. We have w € ? by the definition of 9(?). Then vw is also the only edge containing w
and thus vw is a connected component of M lying entirely in ?. Sov € M> and 7 ¢ A.

We know Mng borders equally many black as white vertices as it is a disjoint union of edges. Thus
A N NE has one more black vertex than white, as we assumed §(NE) = 1. However, we just showed
ANNE C §(NE), and §(NE) is entirely black. So there is a unique vertex vng in A N NE. Similarly,
there are unique vertices vnw, vsg and vsw, with vng and vsw black and vnw and vsg white. Also by
the same logic, #(A N ?) is even for ? € {C,NE,NW,SE, SW}.

Now, the v» must be endpoints of paths. The a priori possible paths are

—

. A path from vNg to ynw through C, and the three other rotations of this.
2. A path from vng to vgw or from vnw to vsg through C.

3. A single edge from vnE to ynw, and the three other rotations of this.

4

. A single edge from vng to N, and the seven other rotations and reflections of this.

As #(ANN) = #(ANI(N)) is even, there must either be 0 or 2 paths of type (4) ending in N, and
similarly for E, S and W. This means we can not have a path joining vng to vsw. If such a path existed,
uvNnw could not be joined to N or W, as that would create one path ending in that set. Also, vnw could
not be joined to vsg, as the paths vngvsw and vnwwvse would cross. Similarly, we may not have a path
joining ynw to vsE.

It is now easy to see that A must decompose either as the union of a northern and a southern join or as
the union of an eastern and a western join. O

Note that, if a v; (i = 1 or 2) passes through C, it will contain an odd number of edges, as its endpoints
are of opposite color.

We first establish the result with all the face variables set equal to 0. Then each side of the equation
is a sum of products of edge variables, and each product corresponds to an M meeting the conditions of
the lemma; we will abuse notation and call this product M as well. We will show each M occurs with the
same coeflicient on both sides. Let k£ denote the number of cycles in M¢c of length greater than 2. We
claim that m(G)m(C) contains M with coefficient 2%. If - is a northern join and 72 a southern join, we
claim that m(NUNEUNW UC)m(SUSE USW U C)m(E)m(W) contains M with a coefficient of 2F and
m(EUNEUSE UC)m(W UNW USW U C)m(N)m(S) does not contain M. If v, is an eastern and 2 a
western join we claim the reverse holds.

Consider first the task of determining how many times M appears in m(G)m(C). This is the same as
the number of ways to decompose M as

M = M(G)u M(C)

with M(G) and M(C) matchings of G and C respectively. (Note that M(C) is not the same as M¢.)
Clearly, the edges with endpoints outside C must lie in M (G). This means all the edges of M-, ? # C, the
edges of ~; if ; does not pass through C and the final edges of ; if v; does pass through C. This forces the
allocation of all the edges of 7; even in the case where ~y; passes through C. This is because when two edges
of M share a vertex, one edge must go in M (G) and one in M (C). This forcing is consistent because ; has
an odd number of edges and the end edges must both lie in M(G). Finally, we must allocate the edges of
Mgc. All the cycles of M¢ are of even length as G is bipartite. In a cycle of length greater than 2, we may
arbitrarily choose which half of its edges came from M (G) and which from M (C). This is 2* choices.

Next, consider the coefficient of M in m(NUNEUNWUC)m(SUSEUSW UC)m(E)m(W). We must
similarly write

M=MNUNEUNWUC)UM(SUSEUSWUC)UME)U M(W).
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We claim that if 1 is an eastern join and 7, a western, this coefficient is 0. There are three cases.
Case 1. v is a path joining NE to SE through C.

Then every edge of y; must liein M(NUNEUNWUC) orin M(SUSEUSW UC)UM(E) and which
of these two it lies in must alternate. There are an odd number of edges in 71, so the final edges must lie in
the same on of these two sets. But any edge with an endpoint in NE must lie in M(NUNE UNW U C)
and any edge with an endpoint in SE must lie in M(SUSEUSW UC)U M (E). =><«.

Case 2. v, is a single edge with endpoints in NE and SE. But none of the M(?)’s can contain such an
edge. =<

Case 3. 71 is a union of two disjoint edges, one connecting NE to E and one connecting SE to E.

But neither of these edge types can lie in any of the four M (?)’s. =<«

We now claim that if y; is a northern join and +, a southern join that M has coefficient 2¥. As before,
the edges of M+, ? € X, ? # C are uniquely allocated to one of M(NUNEUNWUC), M(SUSEUSWUC(),
M(E) and M(W). If v; does not pass through C, its edges are also immediately forced. If -y; does pass
through C, its final edges are forced, thus forcing the others and again we have consistency as the two final
edges are in the same set and ~y; has an odd number of edges. Finally, each cycle of M¢c can be allocated in
two ways.

The case of m(EUNE U SE U C)m(W UNW U SW U C)m(N)m(S) is exactly analogous. We have
now proven the theorem with the face variables set to 1 and continue to remove as much of this condition
as possible.

We first note a general principle:

Lemma 2. Let G be a graph with open faces and Gy, G2, ... G, be various sub-graphs with open faces .
Let M; be o matching of G; for 1 <i <n and let M be the multiset of edges of G obtained by combining all
the M;. Let f be a face of G and let €; be the exponent of f in m(M;) and let € = Y €;. Let G} be another
set of sub-graphs with open faces , M| another set of matchings and so forth. Then, if we establish the result

M=M = =
for the case M = M' = it will follow for every M and M'.

Proof. Let F and F; be the number of edges of M and M; respectively adjacent to f. We have F' =Y F;.
Let f; denote the number of edges of G; adjacent to f. Let ¢; be 1if f is a closed face of G; and if f is an
open face of G;. Define primed versions of all of these quantities analogously.

We have

e (4] )5 (] -a-o) -2 e

The two sums do not depend on M and M' at all and, if M = M' then F = F'. So if the theorem holds
with F' = F' = 0, it holds whenever F = F' and hence whenever M = M. O

Let f be a face. Fix a term M as above and continue the notations M (?) from the above proof. For
? € X, let f(?7) denote the number of vertices of f lying in ? (this is the same notation as before). Let f also
denote the number of vertices of f. When we say f is open or closed without further commentary we mean
as a face of G.

We will show in several cases that the exponent of z in the terms with the product of edge variables M
is the same from every contribution. By Lemma 2, we will just need to check this in the case where no edge
of f is used in any of the matchings. (We do not need to verify that such a matching is actually possible.)

Case 1. All the vertices of f lie in ? for 7€ X, 7 # C.

z; will appear from the contribution of precisely one factor m(?') in each product, either always as an
open or always as a closed face. So the exponent of f is either always [(f — 1)/2] or always [f/2] — 1.
(Remember, we are assuming that no edge of f is used in any of the matchings M(?).) O

Case 2. All the vertices of f lie in C.
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zy will have a contribution from two factors m(?1) and m(?2) in every case and will either always be a
closed face with f edges or always an open face with f — 1 edges. The exponent of = is hence the same in
every case. [

Case 3. The vertices of f lie in two sets, 71 and 72 € X, neither of which is C, we have f(71) = f(72) =1
mod 2 and f is closed.

?1 and 75 can WLOG be taken to be either NE and NW or NE and N. Sometimes z; appears with

exponent
[(F(7) —1)/21+ [(£(72) = 1)/2] = (f(?1) — flg2))/2 -1
and sometimes with exponent
[f/21-1=f/2-1
These are equal. [

Case 4. The vertices of f lie in two sets, 7 and C.

If f is closed ¢ always appears with exponent [(f(C)—1)/2]+[f/2] —1. If f is open z; always appears
with exponent [(f(C) —1)/2] + [(f — 1)/2]. O

Case 5. The vertices of f lie in three sets 71, 72 and 73, none of which are C, with f(71) = f(72) =1
mod 2 and f(73) =0 mod 2. Moreover, f is closed.

Sometimes z; appears with exponent

[f21-1=f/2-1

and sometimes with exponent

[(F(71) =1/21 + [(f(?2) = 1)/2] + [(F (%) = 1)/2] = (f(?1) = 1)/2+ (f(?2) = 1)/2 + f(?s)/2.
These are equal. [

Case 6. The vertices of f lie in 71, 7o and C with f(?1) = f(?72) = 1 mod 2 and f(C) = 0 mod 2.
Moreover, f is closed.

Sometimes x; appears with exponent

[f/21 =1+ [(f(C)-1)/2] = f/2-1+ f(C)/2

and sometimes with exponent

[(f(71) + F(C) = 1)/21 + [(£(?2) + F(C) = 1)/2] = (f(71) + F(C) = 1)/2+ (f(?2) + f(C) - 1)/2.

These are equal. [
Recalling that G is bipartite and hence every closed face of G has an even number of vertices, we see
that are the these cases permitted by the theorem. O

5.2 The Decomposition of G

Let G be a graph arising from the method of crosses and wrenches for some h. The purpose of this section
is to describe a decomposition of the vertices of G into nine disjoint sets. In the next section, we will show
these sets obey the hypotheses of the previous section. For simplicity, we assume at first that (n—2,4,5) ¢ Z.

Let G be the graph corresponding to f(n,i,5). We have F¢(GQ) = C NZ. We will assign every member

SE, SW. The following table should be read as follows: if a face f lies in all the indicated columns, then f
receives the indicated label.
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(n—2,i,5) Label

€ € € € € C
€ € NE

€ € NW
€ € @

S w

The cases cover all situations except (n',i',j) = (n — 2,4,7), which we are currently assuming doesn’t
occur. _

The Rule for Allocating Vertices: Define a vertex to lie in C if it is a vertex of a face in C. Define
a vertex to lie in NE if it is a vertex of a face of NE and not of a face of (~3; define NW, SE and SW
similarly. Define a vertex to lie in N if it is only adjacent to faces in N and similarly for E, W and S. One
can again check that these cases are exclusive. Note that N # F(g(IN)) and similarly for other ?, though
they do live in roughly the same region of the graph.

We can restate this as follows. Let f = (n',4',j').

FENE <= n+itj=n'+i'+j+2 >4 5>
FENW <« n—i+j=n'—i'+j'+2 i'<i, j >
FESE = n+i—j=n'+i'—j'+2,i'>i, j <j
FESW <= n—i—j=n—i—j'+2 i<i, j'<j

feEN «— n+j=n'4j+2 i=i

feES «— n—j=n'—-j+2,i=4

fEE — n+i=n'+i'+2 j=]

fEW «— n—i=n—i'+2 j=j

In the diagrams below, the bold subgraphs are the graphs induced on C, N and so forth. The numbers
in the squares are the function h and the labels are the C and so forth. For all of these pictures, (n,i,j) =
(4,0,0).

DIAGRAM

This is the classical Aztec Diamond case.

DIAGRAM

This is a case constructed to make each of the nine sets abnormally large.

DIAGRAM

This is a graph from the Somos-4 sequence, meant to show a roughly typical level of complexity.
We now must address the case where (n — 2,4,j) € Z. In this case, we do not give (n — 2,i,5). We

also now include the open faces with labels 1(1, E, S and W as well as the closed faces when applying the
Rule above. (We could incorporate them anyways, they won’t change the effect.) Thus, if a vertex borders

an open faces or type N, the unlabeled face (n — 2,4,7) and no other faces, that vertex is in N. The only

difficulty is that we may have a vertex that borders an open face of type ﬁ, an open face of type f), the
unlabeled face and no others. In this case, we split the vertex (as in Lemma 1). The middle vertex of the
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new path we will put in NE, the vertex of the new path closer to the face of type N we will put in N and
the vertex closer to the E face we will put in E. We act similarly in the three other rotationally equivalent
cases.

5.3 Verification of the Hypotheses

We now verify that the sets of vertices C, N, E; W, S, NE, NW, SE and SW obey the hypotheses
of the Condensation Theorem. We also show that the faces of G are all of the type for which we are
permitted to include the face variables. We finally show that m(E) = a(i+n—1,35), m(W) =c(i —n+1,j),
m(N) = b(i,5 +n — 1), m(S) = d(i,j —n + 1). These clearly establish the Main Theorem.

Proposition 2. We have m(E) = a(i + n — 1,j), m(W) = ¢(i —n + 1,5), m(N) = b(i,j +n — 1) and
m(S) =d(i,j —n+1). Moreover, each of these graphs have equally many black and white vertices. There is
ezactly one verter of N that borders NE and similarly for the seven other such pairs. Of these eight vertices,
the four that border N and S are all the same color, which we will take to be white, and the ones the border
E and W are all the other color, which we take to be black.

Proof. The only way for a vertex v to lie in N is for it to be adjacent only to faces in N; let (v',4',j) be
such a face. Now, all faces (n/, i, ') of N have i’ = i. Thus, (h(i' — 1,3),i' — 1,j') and (h(i' +1,5),i' +1,5')
are not in N. But v borders at least one of these, say (h(i’ + 1,5),i' + 1,5'). The only solution is that
this is not a closed face of G, and thus that h(i' + 1,5") +4¢ + ' >n+i+j=h{i",j)+i +5 +2. As
h(i' +1,5') < h(i',j'), we have h(i' +1,j') = h(i',j') + 1.

Thus, we see that the faces of N lie in a vertical line as drawn below. The faces to the left and right of
it are of the form (n' £1,4' £1,5') where (n',i',j') € N. (The two £’s are independent.) The vertices in N
are those that border only faces of the form (n' + 1,4’ £1,3'). So N looks like

DIAGRAM

b(i,j+n —1) is in the indicated spot. and it is clear that the only matching of this graph is as indicated
in bold, so m(N) = b(i,j +n — 1). There are one vertex each bordering NE and NW. Similar remarks
apply to E, W and S.

All that is left to show is that the vertex of N that borders NE and the vertex of E that does are the
same color. It is equivalent to show that the vertex of b(i,j + n — 1) and that of ¢(i + n — 1,5) closer to
NE are the same color. Define h(i’, j') by h(i',j') if (h(i',5'),i',j') € C and min(n + i,n — 1,n + j,n — j)
otherwise. Drawing the infinite graph associated with ﬂ, G is now embedded within it. On top of N, there
is a stack of hexagons and another one on to the right of E. Going out far enough, these are joined by a
path as drawn. So we have a path connecting the requisite vertices of N and E by an even number of edges.

DIAGRAM

Proposition 3. NE and SW have one more black vertex than white, and vice versa for SE and NW.

Proof. We treat the case of NE, the others are practically identical. L

Vertices of NE are adjacent only to faces of type NE, N and E, set NEUNUE =Y. For each such
face (n',i'j'), we have n+1i+j = n' +i' + j' + 2. For each quadruple of faces h(hz.(,j.i)l) hzli(—ﬂ_,lji)l) allinY, we
must then have h(i+1,j) = h(i,5+ 1) = h(i,5) — 1, h(i + 1,5 + 1) = h(é,j) — 2. Thus, there is a wrench at
the junction of these four faces. The two vertices of the wrench have opposite colors, so it makes no total
contribution to §(NE).

The only vertices of NE not arising from such edges are those adjacent to the open faces of G. These
form a path. The endpoints of this path are the vertices of NE that border N and E; we showed in the
previous proposition they are the same color. O

Proposition 4. INE and 0SW are entirely black and vice versa for SE and NW. Moreover, only the
adjacencies permitted by the hypotheses of the Condensation Theorem can occur.
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Proof. Besides the endpoints of the path in the previous proposition, (INE) must be made up entirely of
vertices from the wrenches in the previous proposition. However, in fact, only the south-west vertex of a
wrench will be able to lie in O(INE), and these are all the same color.

This deals with the coloration of the boundaries. This immediately means that NE can not border SW.
We saw in Lemma 2 that NE only borders N and E. These and the symmetrically equivalent restriction
gives the required restrictions on what may border what.

O

Proposition 5. C has equally many black and white vertices.

Proof. Let k < n, (k,i,7) € U. Let Gy, C and so forth denote objects associated to (k,¢,7). When the
subscript is omitted, we are referring to the objects associated to (n,,j). We prove our claim by induction
on k. If (k—2,4,7) € II, then Cy, is empty and the claim is trivial. Otherwise, we have

CrL=Gr2=Cp,_2UNE;_ sUNW; >USE;,_2USW; o UN; 2UE;,_sUWj_3US_s.

By induction §(C—2) = 0 and we have already computed § of each of the other terms in the proceeding
propositions. So we get

8(Cr) =0(Gr_2)=0+14+(-1)+1+(-1)+0+0+0+0=0.
0

At this point, we have verified everything necessary to prove the Main Theorem if we do not wish to
include the face exponents. The verification of the face conditions is tedious, we simply indicate which case
to apply to each. Recall that we must show each face f is of one of the following types:

1. All the vertices of f lie in the same ? € X.
2. The vertices of f lie in two ?’s, 7; and 75, f(q1) and f(¢2) are odd and f is closed.

3. The vertices of f lie in three ?’s, g1, g2 and ¢3 such that not all the f(?;) are even, f(C) is even
(possibly 0) and f is closed.

If f € C, then all the vertices of f lie in C and we can apply (1). If f lies in NE and all the faces that
it has a vertex in common with are in NE N or E then we can still apply (1). The same applies if f € N
and all the faces it shares vertices with are. We also use (1) when f is an open face of G.

If f € NE and has vertices that also lie in faces of C, we can use (2). We also use (2) if f € N and every
vertex of f also is adJacent to either a face of NE or of NW. We use (3) when f € N and every face of f
is adjacent to either NE NW or C. We also use (3) when f € tN and has faces in common with NE and

NW as well as some faces in common with either.
These and their symmetric equivalents include all cases.
O
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