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I. Prologue: the Lyness recurrence

The recurrence relation an = (an−1 + 1)/an−2

has period 5:

a1 = x

a2 = y

a3 = (y + 1)/x

a4 = (x + y + 1)/xy

a5 = (x + 1)/y

a6 = x

a7 = y

...

That is, the map F : (x, y) 7→ (y, (y + 1)/x)
from C×C to itself has period 5 (except where
the composite map is undefined).

Note that for all n, an is a Laurent polyno-
mial in x and y, i.e., a polynomial in x, 1/x,
y, and 1/y. For n = 5, 6, and 7, this prop-
erty requires a “fortuitous” cancellation: e.g.,
we would expect to see a factor of y + 1 in the
denominator of a5.
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Every Laurent polynomial in x and y can be
written as a sum of Laurent monomials of
the form cxayb, where a and b are (not neces-
sarily positive) integers. Alternatively, it can be
written as an ordinary polynomial divided by a
monomial.

E.g.,
(y + 1)/x = x−1y1 + x−1y0.

The Lyness map F has the property that

F (n)(x, y) = (an+1(x, y), an+2(x, y))

is a pair of Laurent polynomials in x and y, for
all n.

The Laurent phenomenon: More often than
we can explain, iterating a Laurent poly-
nomial mapping leaves us in the do-
main of Laurent polynomial mappings.

See Fomin and Zelevinsky, “The Laurent phe-
nomenon”, math.CO/0104241.
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What’s the natural domain for the Lyness map
that avoids the singularities at x = 0 and y =
0?

It’s not enough to look at

{(x, y) : x 6= 0, y 6= 0},

since this is not invariant under the map.

We can fix some of the singularities by moving
to the projective plane:

(t : x : y) 7→ (tx : xy : ty + t2)

Here (t : x : y) ∈ P2 = CP2 = (C3 \
(0, 0, 0)) / ∼, where u ∼ v iff v = cu for some
c 6= 0.

We think of the original affine 2-space as {(t :
x : y) ∈ P2 : t 6= 0}. Each such element of P2

can be written uniquely as (1 : x : y).

We can recover the affine map from the projec-
tive map by setting t = 1: (1 : x : y) → (x :
xy : y + 1) = (1 : y : (y + 1)/x).
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We can construct the projective map from the
affine map by allowing the latter to act on (x/t, y/t).

(x/t, y/t) 7→ (y/t, (y/t + 1)/(x/t))

(1 : x/t : y/t) 7→ (1 : y/t : (y/t + 1)/(x/t))

(t : x : y) 7→ (tx : xy : t(y + t))

F : (t : x : y) 7→ (tx : xy : ty + t2) is a rational
map from P2 to itself. It is not defined on all
of P2 (e.g., it is not defined at (0 : 0 : 1)), but
it is defined on a Zariski dense subset.

(If we want to get rid of all the singularities
of the map, we must blow up the projective
plane at four points in general linear position,
obtaining the “Del Pezzo surface of degree 5”,
but let’s settle for projectivizing today.)

The mapping F is birational: it has a ratio-
nal inverse mapping, at least on a Zariski dense
subset.
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The map F : (t : x : y) 7→ (tx : xy : ty + t2)
has (algebraic) degree 2.

More generally, every rational map F : CPn →
CPn can be written in the form F (x1 : x2 :
. . . : xn+1) = (p1 : p2 : . . . : pn+1) where
p1, . . . , pn+1 are homogeneous polynomials of
some common degree d in the variables x1, . . . ,
xn+1 having no common polynomial factor; this
representation is unique up to scaling, and d is
called the algebraic degree of the map.

Geometrically, the degree of a rational map F :
CPn → CPn is the number of points in F (A)∩
B, where A is a generic CP1 in CPn and B is
a generic CPn−1 in CPn. This relates to the
work of Arnold on intersection-based dynamical
complexity.
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II. The map (x, y) 7→ (y, (y2 + 1)/x)

Generalizing the Lyness sequence, Fomin and
Zelevinsky have studied the recurrence

f (n) =


(f (n− 1)b + 1)/f(n− 2) if n is even,
(f (n− 1)c + 1)/f(n− 2) if n is odd.

where b, c are positive integers. They showed
that recurrences of this form exhibit the Laurent
phenomenon. See Fomin and Zelevinsky, “Clus-
ter algebras I: Foundations”, math.RT/0104151.

The case b = c = 1 is the Lyness recurrence.

It is conjectured that for all b, c ≥ 1, the dis-
tinct Laurent polynomials arising from the (b, c)
recurrence are associated with elements of the
dual canonical basis for the semisimple Kac-
Moody Lie algebra of rank 2 with generalized
Cartan matrix  2 −b

−c 2

 .
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When bc < 4, the (b, c) recurrence is related
to classical root systems, and the period of the
recurrence is equal to the Coxeter number of the
associated reflection group.

For bc ≥ 4, there’s still a (partly conjectural) re-
lationship with infinite reflection groups. When
bc = 4, the reflection group is Euclidean; when
bc > 4, the reflection group is hyperbolic.

Let’s look at the case b = c = 2, the simplest
case in which the recurrence is not periodic.

The associated projective map (w : x : y) 7→
(wx : xy : w2 + y2) is of degree 2. The nth
iterate of this map has degree dn = 2n, so the
algebraic entropy of the map (defined by
Bellon and Viallet as limn→∞ log dn) is equal to
zero.

8



Put a1 = x, a2 = y, and an = (a2
n−1 + 1)/an−2

for n ≥ 3:

a1 = x

a2 = y

a3 = (y2 + 1)/x

a4 = (y4 + x2 + 2y2 + 1)/x2y

a5 = (y6 + x4 + 2x2y2 + 3y4 + 2x2 + 3y2 + 1)/x3y2

. . .

Note that all coefficients are positive.

Positivity of the coefficients is not a consequence
of Laurentness (consider (x3 + y3)/(x + y) =
x2 − xy + y2).
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We “lift” the 1-dimensional recurrence

A

B C = (B^2 + 1) / A

C

to the 2-dimensional recurrence

A

B B’ C = (B B’ + 1) / A

C

(a two-dimensional algebraic cellular automa-
ton).
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A0 A2 A4 A6 A8

B1 B3 B5 B7

C2 C4 C6

D3 D5

E4

...

A0 = x0, A2 = x2, . . .

B1 = y1, B3 = y3, . . .

C2 = (B1B3 + 1)/x2 = x−1
2 y1y3 + x−1

2 , . . .

D3 = (C2C4 + 1)/y3 = a sum of 5 Laurent
monomials in x2, x4, y1, y3, y5, . . .

E4 = (D3D5 + 1)/C4 = a sum of 13 Laurent
monomials in x2, x4, x6, y1, y3, y5, y7, . . .

Note that if the sequences A0, A2, A4, . . . and
B1, B3, B5, . . . are constant (i.e., An = x and
Bn = y for all n) then each succeeding row
is also constant, with Cn = (y2 + 1)/x, Dn =
(((y2+1)/x)2+1)/y, etc.: our original 1-dimensional
recurrence.
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What’s bad about

D3 = (y1y
2
3y5 + x2x4 + y1y3 + y3y5 + 1)/x2x4y3

in comparison with the x, y version

(y4 + x2 + 2y2 + 1)/x2y

is that D3 has more terms.

What’s good about D3 is that it has smaller
coefficients. In fact, all coefficients are equal to
1.

This remains true in all subsequent rows: each
Laurent monomial that occurs has coefficient 1.
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Fact: Every entry in the nth row of this table
(counting the top two rows as the −1st and
0th) is a Laurent polynomial in the variables
xk (with |k| < n and k 6≡ n mod 2) and the
variables yk (with |k| ≤ n and k ≡ n mod 2)
in which all exponents are between −1 and +1
and all coefficients are equal to 1. Moreover,
there is a simple bijection between the Laurent
monomials that occur and the domino tilings of
the rectangle [−n, +n]× [−1, +1] in R2.
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Example (n = 2):

o---o---o---o---o

| | | 1 -1 1 -1 1

--4---2---4---2---4-- y x y x y

| | | -2 -1 0 1 2

o---o---o---o---o

o---o---o---o---o

| | | | 1 -1 0 -1 0

--4---2---3 2 3-- y x y x y

| | | | -2 -1 0 1 2

o---o---o---o---o

o---o---o---o---o

| | | | 0 -1 0 -1 1

--3 2 3---2---4-- y x y x y

| | | | -2 -1 0 1 2

o---o---o---o---o

o---o---o---o---o

| | | | | 0 -1 -1 -1 0

--3 2 2 2 3-- y x y x y

| | | | | -2 -1 0 1 2

o---o---o---o---o

o---o---o---o---o

| | | | 0 0 -1 0 0

--3 3---2---3 3-- y x y x y

| | | | -2 -1 0 1 2

o---o---o---o---o
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Each numerical marking in the tiling tells how
many tile-edges meet at the marked vertex (where
we add two notional tile-edges at the left and
right for convenience).

Each exponent in the Laurent polynomial is 3
less than the corresponding vertex-marking.

Furthermore, each domino-tiling of the 2-by-2n
rectangle can be coded by a sequence of 2n− 1
bits, subject to the rule that no two 1’s can
appear in a row: we put 0’s along vertical break-
lines in the tiling, 1’s everywhere else.
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o---o---o---o---o

| | |

--o---1---0---1---o-- 1 0 1

| | |

o---o---o---o---o

o---o---o---o---o

| | | |

--o---1---0 0 o-- 1 0 0

| | | |

o---o---o---o---o

o---o---o---o---o

| | | |

--o 0 0---1---o-- 0 0 1

| | | |

o---o---o---o---o

o---o---o---o---o

| | | | |

--o 0 0 0 o-- 0 0 0

| | | | |

o---o---o---o---o

o---o---o---o---o

| | | |

--o 0---1---0 o-- 0 1 0

| | | |

o---o---o---o---o
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So the Laurent polynomial is a sum of mono-
mials, which individually represent the different
words of length 2n−1 in the golden mean shift.

It turns out to be useful to think of the domino
tilings of the 2-by-2n rectangle as perfect match-
ings on the 2-by-2n grid-graph, known in the
statistical physics literature as dimer configu-
rations. These are configurations consisting of
some subset of the edges of a graph such that
each vertex occurs in exactly one edge in the
subset.
E.g., domino-tilings of the 2-by-4 rectangle cor-
respond to dimer configurations on the 2-by-4
grid-graph

*---*---*---*

| | | |

*---*---*---*

17



o---o---o---o---o

| | | *---* *---*

--o---o---o---o---o--

| | | *---* *---*

o---o---o---o---o

o---o---o---o---o

| | | | *---* * *

--o---o---o o o-- | |

| | | | *---* * *

o---o---o---o---o

o---o---o---o---o

| | | | * * *---*

--o o o---o---o-- | |

| | | | * * *---*

o---o---o---o---o

o---o---o---o---o

| | | | | * * * *

--o o o o o-- | | | |

| | | | | * * * *

o---o---o---o---o

o---o---o---o---o

| | | | * *---* *

--o o---o---o o-- | |

| | | | * *---* *

o---o---o---o---o

18



The different perfect matchings are states, the
associated monomials are Boltzmann weights,
and the sum of these monomials is the partition
function for this model.
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III. (x, y, z) 7→ (y, z, (y2 + z2)/x)

As in the previous cases, the map can be con-
structed as the composition of an involution
that affects the first term of the tuple (in this
case (x, y, z) 7→ ((y2+z2)/x, y, z)) with a cyclic
shift of the arguments that puts the modified
term at the end of the tuple.

The associated projective map (w : x : y :
z) 7→ (wx : xy : xz : y2 + z2) is of degree 2.
Its iterates have degrees 2, 4, 8, 14, 24, 40, 66,
108, . . . ; each term of the degree sequence is
2 less than twice a Fibonacci number, and the
algebraic entropy is the log of the golden ratio.

Open question (Bellon-Viallet): Is the algebraic
entropy of a rational map always the log of an
algebraic integer?
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Iteration of the original (affine) map yields Lau-
rent polynomials that are partition functions for
bent versions of the 2-by-2n grid:

o---o---o---o

| | | |

o---o---o---o

| |

o---o o---o---o---o o---o---o---o

| | | | | | | | | |

o---o , o---o---o---o , o---o---o---o ,

o---o---o---o

| | | |

o---o---o---o

| |

o---o---o---o---o---o

| | | | | |

o---o---o---o---o---o

| |

o---o---o---o

| | | |

o---o---o---o , ...

The nth graph in the sequence is gotten by tak-
ing two copies of the n−1st graph and overlap-
ping the end of one with the start of the other,
gluing the two graphs together along a copy of
the n− 3rd graph.
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The right way to lift the map (x, y, z) 7→ (y, z,
(y2 + z2)/x) is to put it on an infinite 3-valent
tree. At the root of the tree, we put (x, y, z).
We 3-color the edges of the tree so that each
vertex has one incident edge of each color, and
the three colors correspond to the three involu-
tions (x, y, z) 7→ ((y2+z2)/x, y, z), (x, y, z) 7→
(x, (x2+z2)/y, z), (x, y, z) 7→ (x, y, (x2+y2)/z).

... ...

\ /

((y^2+z^2)/x, y, z)

|

... (x,y,z) ...

\ / \ /

(x, (x^2+z^2)/y, z) (x, y, (x^2+y^2)/z)

| |

... ...

Putting x = y = z = 1, we get a triple of
numbers (a, b, c) satisfying the relation a2+b2+
c2 = 3abc (a Markoff triple).

This is also related to the Farey tree. See links
to preprints at
http://www.math.wisc.edu/∼propp/reach/.
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IV. (w, x, y, z) 7→ (x, y, z, (xz+y2)/w)

This example arose from the study of the Somos-
4 sequence

1, 1, 1, 1, 2, 3, 7, 23, 59, 314, . . .

satisfying the relation

an = (an−1 an−3 + an−2 an−2) / an−4

(see article by Gale).

The projective version is (v : w : x : y : z) 7→
(vw : wx : wy : wz : xz+y2), whose degree se-
quence grows quadratically rather than linearly
or exponentially.
This recurrence exhibits the Laurent property,
and positivity of coefficients. The only known
proof of positivity makes use of a combinato-
rial interpretation of the Laurent polynomial in
terms of dimer configurations on suitable graphs.
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Speyer and Bousquet-Mélou–Propp–West (2002):
The rational functions an,i,j(. . .) (n, i, j ∈ Z)
defined by the initial conditions

an,i,j = xn,i,j (1 ≤ n ≤ 4)

and the recurrence relation

an,i,j = (an−1,i−1,j an−3,i+1,j + an−2,i,j−1 an−2,i,j+1)

/ an−4,i,j

(for n > 4) are Laurent polynomials with posi-
tive coefficients, and in fact, with all coefficients
equal to 1.
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The first result of this kind was proved back in
the mid-1980s by Robbins and Rumsey. They
proved an analogous claim for the recurrence

an,i,j = (an−1,i−1,jan−1,i+1,j+an−1,i,j−1an−1,i,j+1)/an−2,i,j

For this recurrence, the relevant dimer-graphs
turned out to be the Aztec diamond graphs
(Elkies, Kuperberg, Larsen, and Propp, 1992):

o---o

| |

o---o---o---o

| | | |

o---o---o---o---o---o

| | | | | |

o---o---o---o---o---o---o---o

| | | | | | | |

o---o---o---o---o---o---o---o

| | | | | |

o---o---o---o---o---o

| | | |

o---o---o---o

| |

o---o

Aztec diamond graphs have been an important
tool in the study of the dimer model on a square
grid.
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For both of these three-dimensional recurrences,
note that the subscript-triples, viewed as points
in 3-space, form the vertices of a centrally sym-
metric octahedron. Equations of this shape are
instances of the discrete Hirota equation from
the theory of integrable systems (see Zabrodin).
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IV. Beyond dimer models

The two-dimensional algebraic cellular automa-
ton

ai,j,k = (ai−1,j,kai,j−1,k−1 + ai,j−1,kai−1,j,k−1 +

ai−1,j,kai,j−1,k−1) / ai−1,j−1,k−1

(the “cube recurrence”), like the octahedron re-
currence, exhibits quadratic degree-growth.

Here the relevant combinatorial models are not
dimer models but stat mech models involving
constrained spanning-trees called groves. (See
Carroll and Speyer.)
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V. Stability

A kind of p-adic numerical stability seems to go
hand-in-hand with the Laurent property.

Recall that the Somos-4 recurrence is associated
with the rational map

(w, x, y, z) → (x, y, z, (xz + y2)/w)

from C4 to itself (with singularities).

How might we compute the Somos-4 sequence
modulo 8 (say)?

Can we replace C by Z/8Z?

View modular division as a multi-valued func-
tion; e.g., 4 / 2 is 1 or 5 mod 8.

If we only keep track of the terms of the Somos-4
sequence mod 8, divergence occurs when we di-
vide an even number by an even number, which
is ambiguous mod 8.
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(1,2,3,7)

|

(2,3,7,7)

/ \

(3,7,7,3) (3,7,7,7)

| |

(7,7,3,2) (7,7,7,6)

| |

(7,3,2,1) (7,7,6,5)

| |

(3,2,1,1) (7,6,5,1)

| |

(2,1,1,1) (6,5,1,1)

/ | | \

(1,1,1,1) (1,1,1,5) (5,1,1,5) (5,1,1,1)

| | | |

(1,1,1,2) (1,1,5,6) (1,1,5,6) (1,1,1,2)

But note that re-convergence occurs too.
This happens more often than we can
explain.
See Kedlaya and Propp, “In search of
Robbins stability”, math.NT/0409535.
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VI. Summary

When iterates of a rational map from
affine n-space to itself have the Lau-
rent property (i.e., for all n the nth
iterate of the map is given by an n-
tuples of Laurent polynomials), there is
often some way to view each Laurent
polynomial as the partition function for
an exactly solvable statistical mechan-
ics model. The size of the model is
given roughly by the degree of the asso-
ciated iterated mapping from projective
n-space to itself.

Sometimes the natural setting for a one-
dimensional recurrence is a higher-dimensional
recurrence.
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The link between dynamics and combi-
natorics can yield proofs of the Laurent
property as well as proofs of positivity of
the coefficients. (Laurentness can also
be proved by cluster algebra methods;
positivity cannot.)

All the stat mech models obtained from
recurrences in this fashion appear to be
exactly solvable (e.g., bulk entropy can
be expressed exactly via integrals and
infinite series).

Wild guess: If one can find a recurrence
that has the Laurent property, positive
coefficients, and third-power growth in
its degree-sequence, it should correspond
to an exactly solvable three-dimensional
stat mech model (of which very few are
known).
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Very little systematic theory has been
developed for dynamical systems the-
ory in the category of algebraic geom-
etry and rational/birational maps, and
many foundational questions remain open.
E.g., is the algebraic entropy of a ra-
tional map always the logarithm of an
algebraic integer?
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