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I. Equal combinatorial rights for negative numbers?
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Counting

If a set S has n elements, the number of subsets of S of size k
equals

n(n − 1)(n − 2) · · · (n − k + 1)/k!

Let’s take this formula to be our definition of
(n
k

)
.

Examples:

n = 4:
(4
3

)
= 4 · 3 · 2/6 = 4

n = 3:
(3
3

)
= 3 · 2 · 1/6 = 1

n = 2:
(2
3

)
= 2 · 1 · 0/6 = 0

n = 1:
(1
3

)
= 1 · 0 · (−1)/6 = 0

n = 0:
(0
3

)
= 0 · (−1) · (−2)/6 = 0
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Extrapolating

If there were such a thing as a set with −1 elements, how many
subsets of size 3 would it have?

One commonsense answer is “Zero, because a set of size < 3 can’t
have any subsets of size 3!”
But what answer does the formula give?

n = −1:
(−1

3

)
= (−1) · (−2) · (−3)/6 = −1

Likewise, if there were such a thing as a set with −2 elements, how
many subsets of size 3 would it have, according to the formula?

n = −2:
(−2

3

)
= (−2) · (−3) · (−4)/6 = −4

What might this mean?
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II. Hybrid sets
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Loeb, following Stanley (see the reading list at the end of the
slides), defines a “set with a negative number of elements” as a set
whose elements can be selected more than once, and indeed as
many times as one likes (multisets with unbounded multiplicity).

Example: Let S = {{x , y}} where x and y are “negative
elements”. The subsets of S of size 2 are {{x , x}}, {{x , y}}, and
{{y , y}}.

Check:
(−2

2

)
= (−2)(−3)/2! = 3.
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Trouble (and trouble averted)

The subsets of S of size 3 are {{x , x , x}}, {{x , x , y}}, {{x , y , y}},
and {{y , y , y}}. There are 4 such subsets.

Compare:
(−2

3

)
= (−2)(−3)(−4)/6 = −4.

Why the minus sign?

Decree that a multiset with k negative elements (some of which
may be equal to each other) has weight (−1)k .

Theorem: If S has m negative elements,
(−m

k

)
is the sum of the

weights of all the k-element subsets of S , where elements can be
repeated.
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Proof

All the k-element subsets have weight (−1)k , so it’s enough to
show that

(−m
k

)
equals (−1)k times the number of such subsets.

Evaluate
(−m

k

)
:

(
−m

k

)
= (−m)(−m − 1) · · · (−m − k + 1)/k!

= (−1)k(m)(m + 1) · · · (m + k − 1)/k!

= (−1)k

(
m + k − 1

k

)
.
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Proof (concluded)

Count the subsets using “stars and bars”:

x x x ∗ ∗ ∗ |
x x y ∗ ∗ | ∗
x y y ∗ | ∗ ∗
y y y | ∗ ∗ ∗

There are k stars and m − 1 bars, so there are
(k+m−1

k

)
permutations.

Since
(m+k−1

k

)
=
(k+m−1

k

)
, we are done.
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Reciprocity law

The formula (
−m

k

)
= (−1)k

(
m + k − 1

k

)
is valid for both positive and negative values of m.

We call it a (combinatorial) reciprocity law, because it relates the
values of

(n
k

)
for the two different values of n whose sum is some

specified number (in this case the number k − 1).
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Hybrid sets

We can get a more satisfying picture that unifies the world of sets
with ordinary (or “positive”) elements with the world of sets with
negative elements. This is the world of hybrid sets.

Positive elements contribute +1 (multiplicatively) to the weight of
a subset they belong to, and they can only be chosen once.

Negative elements contribute −1 (multiplicatively) to the weight of
a subset they belong to, and they can be chosen repeatedly.
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An example

Let S be the hybrid set with 1 ordinary element, a, and 2 negative
elements, x and y , so that the “number of elements of S according
to sign” is 1− 2 = −1.

“How many subsets of size 3 does S have?”
By this I mean, what is the sum of the weights of all the subsets of
S of size 3?

Subsets of weight −1:
{{x , x , x}}, {{x , x , y}}, {{x , y , y}}, {{y , y , y}}
Subsets of weight +1:
{{a, x , x}}, {{a, x , y}}, {{a, y , y}}
Total weight of all subsets: (4)(−1) + (3)(+1) = −1.

Compare:
(−1

3

)
= (−1)(−2)(−3)/6 = −1.
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“Homework”

Prove that if a hybrid set S has A ordinary elements and B
negative elements, then the sum of the weights of the k-element
subsets of S is

(A−B
k

)
.
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The bigger picture

This last result quells some of our anxieties about negative
elements but it leaves us wondering what all this is good for, and
how it relates to the rest of mathematics.

And we’re also left wondering how one could have come up with
the idea of negative elements or hybrid sets, and how one can
come up with analogous ideas for other attempts to extend
combinatorics to the negative integers.

Such as:

Example: the two-sided Fibonacci sequence

. . . ,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, . . .

Ordinary Fibonacci numbers have lots of combinatorial
interpretations. But what do the terms to the left of the 0
“count”?

30 / 99



The bigger picture

This last result quells some of our anxieties about negative
elements but it leaves us wondering what all this is good for, and
how it relates to the rest of mathematics.

And we’re also left wondering how one could have come up with
the idea of negative elements or hybrid sets, and how one can
come up with analogous ideas for other attempts to extend
combinatorics to the negative integers. Such as:

Example: the two-sided Fibonacci sequence

. . . ,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, . . .

Ordinary Fibonacci numbers have lots of combinatorial
interpretations. But what do the terms to the left of the 0
“count”?

31 / 99



Things to come

The rest of the talk:

I Use Euler characteristic to give a geometric interpretation of(−2
3

)
.

I Use recurrences to derive directly an implicit combinatorial
meaning for

(−2
3

)
.

I Apply the ideas to the two-sided sequence of Fibonacci
numbers.

I Indicate prospects for future work.
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III. Euler characteristic
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One dimension

Let S be a subset of R that can be written as a disjoint union of
finitely many points (aka vertices) and open intervals (aka
edges), e.g., [0, 1) = {0} ∪ (0, 1).

We define χ(S) as the number of points minus the number of
open intervals.

This can be shown to be independent of how S is represented as a
disjoint union of vertices and edges; e.g.
χ([0, 1]) = χ({0} ∪ (0, 1) ∪ {1}) = 1− 1 + 1 = 1 and
χ([0, 1]) = χ({0}∪(0, 1

2)∪{1
2}∪(1

2 , 1)∪{1}) = 1−1+1−1+1 = 1

χ(·) is called Euler measure or (combinatorial) Euler
characteristic.
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Higher dimensions

More generally, let S be a polyhedral subset of Rd , i.e., a set
defined by a Boolean expression involving finitely many linear
equations and inequalities in d variables.

Write S as a disjoint union of V vertices, E edges, F faces, . . . .

Then
χ(S) := V − E + F − . . .

is independent of the decomposition of S into vertices, edges,
faces, etc.
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Examples of Euler characteristic

Let S = {(x , y) ∈ R2 : 0 < x < y < 1}.

S is an open triangle containing 0 vertices, 0 edges, and 1 face, so
χ(S) = 0− 0 + 1 = 1.

Similarly, let S = {(x , y , z) ∈ R3 : 0 < x < y < z < 1}.

S is an open tetrahedron with χ(S) = 0− 0 + 0− 1 = −1.

More generally, a bounded open (resp. bounded closed) polyhedral
subset of Rd has Euler measure (−1)d = ±1 (resp. (+1)d = 1).
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Combinatorial Euler characteristic has nice properties

χ is homeomorphism-invariant:
If two polyhedral subsets are homeomorphic, they have the same
Euler measure.
E.g., (1,∞) and (0, 1) (homeomorphic under the map t 7→ 1/t)
both have Euler measure −1.

χ is additive: If S1 and S2 are disjoint,

χ(S1 ∪ S2) = χ(S1) + χ(S2).

χ is multiplicative:

χ(S1 × S2) = χ(S1)χ(S2).

(Ordinary Euler characteristic does not have any of these
properties.)
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Combinatorial Euler characteristic and binomial coefficients

Theorem (McMullen? Morelli?): If S ⊆ R with

χ(S) = m ∈ Z,

and we define(
S

k

)
:= {(x1, x2, . . . , xk) ∈ Sk ⊆ Rk : x1 < x2 < · · · < xk},

then

χ(

(
S

k

)
) =

(
m

k

)
.
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The geometrical meaning of
(−2

3

)
Example: S = (0, 1) ∪ (2, 3).

(S
3

)
is the disjoint union of four open

tetrahedra: {(x , y , z) : 0 < x < y < z < 1},
{(x , y , z) : 0 < x < y < 1, 2 < z < 3},
{(x , y , z) : 0 < x < 1, 2 < y < z < 3},
{(x , y , z) : 2 < x < y < z < 3},
each of which has Euler measure (−1)3, so

χ(

(
S

3

)
) = (−1) + (−1) + (−1) + (−1)

= −4 =

(
−2

3

)
=

(
χ(S)

3

)
.
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Hybrid sets, in a geometrical setting

Likewise, you should check that with S = (0, 1) ∪ (2, 3) ∪ {4},

χ(

(
S

3

)
) = (−1) + (−1) + (−1) + (−1) + (1) + (1) + (1)

= −1 =

(
−1

3

)
=

(
1− 2

3

)
=

(
χ(S)

3

)
.
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IV. Encoding combinatorics algebraically
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Symmetric polynomials

The algebraic analogue of
(4
3

)
is

e
(4)
3 := x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4.

The algebraic analogue of
(3
3

)
is

e
(3)
3 := x1x2x3.

These are symmetric polynomials: they are unaffected by
swapping any two variables.

More generally, e
(m)
n (the “elementary symmetric function of

degree n in m variables”) is the sum of all products of the variables
x1, . . . , xm, taken n at a time.
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Recurrences

Symmetric functions satisfy linear recurrences:

e
(4)
3 = (x1x2x3) + (x1x2x4 + x1x3x4 + x2x3x4)

= (x1x2x3) + (x1x2 + x1x3 + x2x3)x4

= e
(3)
3 + x4 e

(3)
2

More generally,

e
(n)
3 = e

(n−1)
3 + xn e

(n−1)
2
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Recurrences in reverse

To discover the right definition of e
(n)
3 with n < 0, run the

recurrence relation in reverse.

e
(n)
3 = e

(n−1)
3 + xne

(n−1)
2

becomes

e
(n−1)
3 = e

(n)
3 − xne

(n−1)
2

To apply this recurrence to compute e
(n−1)
3 for all n ∈ Z, we need

to know e
(n−1)
2 for all n ∈ Z.

But we can use the same trick with e2, reducing it to a problem of
determining e1.
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Try it!

e1:
x1 + x2 + x3, x1 + x2, x1,

0, − x0, − x0 − x−1, − x0 − x−1 − x−2, . . .

e2:
x1x2 + x1x3 + x2x3, x1x2, 0, 0, x

2
0 , x

2
0 + x0x−1 + x2

−1, . . .

e3:
x1x2x3, 0, 0, 0, − x3

0 , − x3
0 − x2

0x−1 − x0x
2
−1 − x3

−1, . . .

Up to sign, we are getting a reciprocity between the elementary
symmetric polynomials and the complete homogeneous

symmetric polynomials h
(m)
n .
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Unification

You should take the time to see how the formal expressions that
the backward recurrence gives us (complete homogeneous
symmetric polynomials) correspond to multisets, and that the
behavior of the signs is compatible with the combinatorics of
Loeb’s negative sets.

You should also take the time to see how, for any 1-dimensional
polyhedral set S in R, the polyhedral set

(S
k

)
splits into cells, and

how the monomial terms in a complete homogeneous symmetric
polynomial correspond to the cells.
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V. Fibonacci numbers
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A combinatorial problem

In how many ways can we write n as an ordered sum of 1’s and 2’s?
n = 1: 1 way (1)
n = 2: 2 ways (2, 1 + 1)
n = 3: 3 ways (1 + 2, 2 + 1, 1 + 1 + 1)
n = 4: 5 ways (2 + 2, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1)

View each sum as a way of tiling a segment of length n by
segments of length 1 and length 2, and represent each tiling by the
monomial

∏
xi where i varies over all locations at which there is a

segment of length 1.

E.g., the 5 ordered sums with n = 4 correspond to the respective
monomials 1, x1x2, x1x4, x3x4, x1x2x3x4.
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From Fibonacci numbers to Fibonacci polynomials

Let Pn(x1, x2, . . . ) be the sum of all monomials in x1, . . . , xn

associated with tilings.
P1 = x1

P2 = 1 + x1x2

P3 =

x1 + x3 + x1x2x3 = x1 + (1 + x1x2)x3 = P1 + x3P2

In general,
Pn+1 = Pn−1 + xn+1Pn.

(From this it is easy to check that the number of terms in the
polynomials Pi are the successive Fibonacci numbers: set
x1 = x2 = · · · = 1.)
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Running backwards

Iterating the reverse recurrence

Pn−1 = Pn+1 − xn+1Pn

we get
P0 = 1
P−1 = 0
P−2 = 1
P−3 = −x−1

P−4 = 1 + x−1x−2

P−5 = −x−1 − x−3 − x−1x−2x−3

P−6 = 1 + x−1x−2 + x−1x−4 + x−3x−4 + x−1x−2x−3x−4

Theorem (Propp): For n ≥ 0, P−n is (−1)n times the polynomial
obtained from Pn−2 by replacing xk by x−k for all k ≥ 1.
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Bringing in some geometry

Fix a polyhedral set P ⊆ R.

Call a finite subset S ⊆ P fabulous if for all
t, t ′ ∈ S ∪ {+∞,−∞}, χ((P \ S) ∩ (t, t ′)) is even.

E.g.: the fabulous subsets of {1, 2, 3} are {1}, {3}, and {1, 2, 3}.

E.g.: The fabulous subsets of (0, 1) ∪ (2, 3) ∪ (4, 5) ∪ (6, 7) are the
empty set and all sets of the form {x , y} with 2 < x < 3,
4 < y < 5.

Theorem (Propp): If P ⊆ R with χ(P) = n, the set of fabulous
subsets of P has Euler characteristic equal to the Fibonacci
number (φn+1 − φ−n−1)/

√
5 (with φ = (1 +

√
5)/2).
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VI.What’s next?
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A curriculum of combinatorics

Say a combinatorial sequence s1, s2, . . . is of grade d if sn ∼ cnd
in

the sense that for all c > 1 and all ε > 0, sn/c
nd+ε → 0 and

sn/c
nd−ε →∞.

“Grade 0” (or “kindergarten”) combinatorics: n2,
(n
2

)
,
(n
3

)
, . . .

“Grade 1” combinatorics: 2n, (φn+1 − φ−n−1)/
√

5 (Fibonacci
numbers), 1

n+1

(2n
n

)
(Catalan numbers), n!, nn, . . .

“Grade 2” combinatorics: 2n(n+1)/2 (number of perfect matchings
of the Aztec diamond graph of order n),

∏n
i=1

∏n
j=1

∏n
k=1

i+j+k−1
i+j+k−2

(number of rhombus tilings of the regular hexagon of order n),∏n−1
k=0

(3k+1)!
(n+k)! (number of alternating-sign matrices of order n),
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A curriculum of combinatorics
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in

the sense that for all c > 1 and all ε > 0, sn/c
nd+ε → 0 and

sn/c
nd−ε →∞.
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The rampancy of reciprocity

In very many cases, one finds that a one-sided sequence s1, s2, . . .
with enumerative meaning admits a natural extension to a
two-sided sequence . . . , s−1, s0, s1, . . . ; and in many of those cases,
one finds that the resulting two-sided sequence satisfies a
combinatorial reciprocity property (i.e., satisfies sn = ±sa−n for all
n, for some a).

Why?

Finding a setting in which the numbers s−1, s−2, . . . actually mean
something is one way to try to resolve the mystery of
combinatorial reciprocity.
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To learn more, read:

Negative sets have Euler characteristic and dimension, by Stephen
Schanuel; Proceedings of Category Theory, 1990, Lecture Notes in
Mathematics vol. 1488, pp. 379–385.

Sets with a negative number of elements, by Daniel Loeb;
Advances in Mathematics 91 (1992), 64–74;
http://jamespropp.org/negative.pdf

Euler Measure as Generalized Cardinality, by James Propp;
http://front.math.ucdavis.edu/0203.5289

Exponentiation and Euler measure, by James Propp; Algebra
Universalis 49, no. 4, 459–471 (2003);
http://front.math.ucdavis.edu/0204.5009
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And also
A Reciprocity Theorem for Monomer-Dimer Coverings, by Nick
Anzalone and John Baldwin and Ilya Bronshtein and T. Kyle
Petersen; Discrete Mathematics and Theoretical Computer Science
AB(DMCS), 2003, 179–194; http://www.dmtcs.org/
dmtcs-ojs/index.php/proceedings/article/view/dmAB0115

A Reciprocity Theorem for Domino Tilings, by James Propp;
Electronic Journal of Combinatorics 8, no. 1, R18 (2001);
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v8i1r18

A Reciprocity Sequence for Perfect Matchings of Linearly Growing
Graphs, by David Speyer (unpublished); http:
//www.math.lsa.umich.edu/~speyer/TransferMatrices.pdf

Combinatorial Reciprocity Theorems, by Richard Stanley; Advances
in Mathematics 14, 1974, 194–253;
www-math.mit.edu/~rstan/pubs/pubfiles/22.pdf
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Thanks for listening!

The slides for this talk are on-line at

http://jamespropp.org/msri-up12.pdf
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