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Walks

Given positive integers a, b, and n = a+ b, there are n!/a!b! ways
to take a walk in Z

2 from (−a, a) to (b, b) consisting of a steps of
type (+1,−1), or downsteps, and b steps of type (+1,+1), or
upsteps.
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A walk on walks

Given a walk, or lattice path, P , from (−a, a) to (b, b), we can do
a cyclic shift of the a+ b steps, obtaining a new lattice path
promotion(P) from (−a, a) to (b, b).
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Promoting paths

If we apply promotion n = a+ b times, we get back the original
lattice path. See PromotionOrbit.pdf.

So we have an action of the cyclic group Z/nZ on the set of lattice
paths from (−a, a) to (b, b).
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Paths enclose areas

For each path P , define A(P) as the area bounded by P and the
graph of y = |x | (using tilted squares as units).

In this example A(P) = 3.
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Averaging areas

Claim 0: The average of A(P) over all paths P from (−a, a) to
(b, b) is ab/2.

Proof:

16 / 39
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Claim 0: The average of A(P) over all paths P from (−a, a) to
(b, b) is ab/2.

Proof: Pair each lattice path with its image under 180 degree
rotation of the path about its center.
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Averaging areas

Claim 0: The average of A(P) over all paths P from (−a, a) to
(b, b) is ab/2.

Proof: Pair each lattice path with its image under 180 degree
rotation of the path about its center.

The average of A(P) over each pair (or singleton) is ab/2.
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Averaging over orbits

Claim 1: The average of A(P) over all paths P within each
promotion-orbit O is ab/2.

See PromotionAverage.pdf.
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Averaging over orbits

Claim 1: The average of A(P) over all paths P within each
promotion-orbit O is ab/2.

See PromotionAverage.pdf.

Before I show you the proof, let’s consider another fact with the
same flavor.
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Another walk on walks

Here’s another operation on paths, called rowmotion:

1) Everywhere the path P contains a downstep followed by an
upstep, mark the beginning of the downstep and the end of the
upstep by a red dot.

2) Also mark the endpoints of the path by red dots.

3) Take each path-segment bounded by red dots and rotate it in
place by 180 degrees.

The new path is rowmotion(P).

See RowmotionOrbit.pdf.
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Un-walking the walk

Before we do the rotation, the dots demarcate the places where we
see a downstep followed by an upstep;
after we do the rotation, the dots demarcate the places where we
see an upstep followed by a downstep.

Remember this.

This observation implies that rowmotion is reversible.
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Row, row, row, ...

It can be shown (Fon-Der-Flaass, 1993, with subsequent
clarifications by Stanley and Armstrong) that if we apply
rowmotion n = a+ b times, we get back the original lattice path.

So we have a different action of the cyclic group Z/nZ on the set
of lattice paths from (−a, a) to (b, b).

Claim 2: The average of A(P) over all paths P within each
rowmotion orbit O is ab/2.

See RowmotionAverage.pdf.
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Averaging the paths themselves

In fact, Claims 1 and 2 follow from stronger claims about
orbit-averages, where we average not the values of A(P) but the
P ’s themselves, viewed as real-valued functions from [−a, b] to R.

Claim 1′: The average of P(·) over each promotion-orbit O is the
linear function L(·) whose graph goes through (−a, a) and (b, b).

Claim 2′: The average of P(·) over each rowmotion-orbit O is the
linear function L(·) whose graph goes through (−a, a) and (b, b).
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Averaging paths and averaging areas: an example
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Reducing Claims 1′ and 2′ to Claims 1 and 2

Let O denote an orbit (for now, it doesn’t matter whether it’s a
promotion orbit or a rowmotion orbit).

Let PO(·) denote the average of the functions P(·) within O.

On the one hand, the area bounded by PO(·) equals the average of
A(P) within O.

On the other hand, Claims 1′ and 2′ imply that the area bounded
by PO(·) equals the area bounded by L(·), which is ab/2.

So Claims 1′ and 2′ imply Claims 1 and 2.
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Averaging paths and averaging values

Each function P : [−a, b] → R is linear on each interval [n, n + 1]
(with n an integer), so PO is too.

So to prove Claim 1′ or 2′, it’s enough to prove that for every
integer n in [−a, b], PO(n) = L(n).

We know that it’s true for n = −a and n = b (since
P(−a) = a = L(a) and P(b) = b = L(b) for all paths P); what
about values of n in between?
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Averaging values and averaging differences of values

We know that the values of L(·) at −a,−a+ 1, . . . , b form an
arithmetic progression with first term a and last term b.

We also know that PO(−a) = a and PO(b) = b.

To prove that PO(n) = L(n) for all n, it’s enough to show that
PO(−a), PO(−a+ 1), . . . , PO(b) form an arithmetic progression.

We’ll do this by showing that the difference between each term
and the next doesn’t change as you move through the sequence
PO(−a), PO(−a+ 1), . . . , PO(b).
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Difference sequences

Represent each P by its difference sequence

(P(n)− P(n − 1) : a+ 1 ≤ n ≤ b),

consisting of a −1’s and b +1’s, which we’ll sometimes write as
“+” and “−”.
These represent the slopes of the path-segments.
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Difference arrays

For simplicity, assume #(O) = n.
Create an n-by-n array, in which the kth row is the difference
sequence for the kth element of an orbit O.
Call it the difference array for the orbit.

The average of the +1’s and −1’s in the nth column of the
difference array is equal to the average of P(n)− P(n − 1) as P
varies over O, which is just PO(n)− PO(n − 1).

So all we need to do is to show that each column has the same
average as the next.
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Proof of Claim 1′ (promotion)
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Since each row of the difference array is the rightward shift of the
row above it, each column is the downward shift of the column to
its left.

In particular, each column has the same number of +’s and −’s as
the next, so each column has the same average as the next, QED.
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Proof of Claim 2′ (rowmotion)
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Proof of Claim 2′ (rowmotion)
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Remember that a path P has a downstep followed by an upstep
precisely where rowmotion(P) has an upstep followed by a
downstep.
So a row in the difference array has a − followed by a + if and only
if the following row (with wraparound) has a + followed by a −.
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Proof of Claim 2′ (concluded)
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Hence if we look at two consecutive columns, the places where
they differ pair up: places with a − to the left of a + are paired
with places with a + to the left of a −.
So each column has the same number of +’s and −’s as the next,
so each column has the same average as the next, QED.
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What is the context for results like this?

For many cyclic actions τ on a finite set S of combinatorial objects,
and for many natural statistics φ on S , the average of φ over each
τ -orbit in S is the same as the average of φ over the whole set S .
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What is the context for results like this?

For many cyclic actions τ on a finite set S of combinatorial objects,
and for many natural statistics φ on S , the average of φ over each
τ -orbit in S is the same as the average of φ over the whole set S .

We say that (S , τ, φ) exhibits combinatorial ergodicity, or the
CAAO (Constant Averages Along Orbits) property.
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Linearity

A key tool in proving that the CAAO property holds for a specific
triple is the fact that, for fixed S and fixed φ : S → S , the set of
φ’s for which (S , τ, φ) has the CAAO property is a vector space:
linear combinations of φ’s with the CAAO property have the
CAAO property too.

In our promotion and rowmotion proofs, we used linearity to deduce
the CAAO property for the area A(P) from the CAAO property for
the differences P(−a+ 1)− P(−a), . . . ,P(b)− P(b − 1).
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Riddle

A Russian colleague of mine was complaining about the students in
one of his classes, and it sounded like he said:

“I am in middle of lecture, students are walking in, other students
are walking out; is cows!”

What did he really say?
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The future

Tom Roby and I have found numerous examples of triples with the
CAAO property; stay tuned for a preprint coming soon to a
home-page near you.

If you’re in a boring talk:
Take your favorite example of a bijection from a set of
combinatorial objects to itself, and your favorite statistic on such
objects, and compute the average of the statistic on each orbit of
the action.
You may find that the statistic exhibits combinatorial ergodicity.

Slides for this talk are on-line at

http://jamespropp.org/mathfest12a.pdf
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