Tiling lattices with sublattices
 Jim Propp
 (U. Mass. Lowell)

April 26, 2009
(joint with David Feldman of the University of New Hampshire and Sinai Robins of Nanyang Technological University)

Slides for this talk are on-line at jamespropp.org/fpr-slides.pdf

The (one-page) preprint is at jamespropp.org/fpr.pdf

Mirsky and Newman (after a conjecture of Erdős): If \mathbf{Z} is written as a disjoint union of finitely many two-sided arithmetic progressions

$$
a_{1}+d_{1} \mathbf{Z}, a_{2}+d_{2} \mathbf{Z}, \ldots, a_{n}+d_{n} \mathbf{Z}
$$

with $n>1$, then two of the d_{i} 's must be equal.

That is, if we tile the 1-dimensional lattice \mathbf{Z} by translates of sublattices of \mathbf{Z}, two of the sublattices must be the same.

I'll give a Fourier analysis proof and then show how it yields a generalization of the Mirsky-Newman result for tilings of higher-dimensional lattices by sublattices.
"Book proof" of Mirsky-Newman theorem (found by Mirsky and Newman, rediscovered by Davenport and Rado):
Write $\mathbf{N}=\{0,1,2, \ldots\}$ as a disjoint union of the sets $a_{1}+d_{1} \mathbf{N}, \ldots, a_{n}+d_{n} \mathbf{N}$ (adjusting the a_{i} 's as needed) so that

$$
\frac{1}{1-z}=\frac{z^{a_{1}}}{1-z^{d_{1}}}+\ldots+\frac{z^{a_{n}}}{1-z^{d_{n}}}
$$

Let $D=d_{m}>1$ be the largest of the d_{i} 's.
The associated term $\frac{z^{a_{m}}}{1-z^{d_{m}}}$ in the RHS has a pole at $\exp (2 \pi i / D)$ but the LHS does not, so there must be another term $\frac{z^{a_{j}}}{1-z^{d_{j}}}$ in the RHS that cancels the pole, with D dividing d_{j}.
But $D \geq d_{j}$ by choice of D, so $d_{j}=$ $D=d_{m}$.

We prefer to work in the two-sided setting (\mathbf{Z} instead of \mathbf{N}) and use (discrete) Fourier transforms instead of generating functions.
E.g., consider the tiling of \mathbf{Z} by $2 \mathbf{Z}$, $4 \mathbf{Z}+1$, and $4 \mathbf{Z}+3$.
(With generating functions this corresponds to the decomposition

$$
\frac{1}{1-z}=\frac{1}{1-z^{2}}+\frac{z}{1-z^{4}}+\frac{z^{3}}{1-z^{4}}
$$

where the last two terms on the RHS have poles at $z=i$ and at $z=-i$ that cancel each other.)

We take the discrete Fourier transforms of the indicator functions of the sets \mathbf{Z}, $2 \mathbf{Z}, 4 \mathbf{Z}+1$, and $4 \mathbf{Z}+3$.

$$
\begin{aligned}
1_{\mathbf{Z}}(n)= & 1^{n} \\
1_{2 \mathbf{Z}}(n)= & (1 / 2) 1^{n}+(1 / 2)(-1)^{n} \\
1_{4 \mathbf{Z}+1}(n)= & (1 / 4) 1^{n}+(-i / 4)(i)^{n} \\
& +(-1 / 4)(-1)^{n}+(i / 4)(-i)^{n} \\
1_{4 \mathbf{Z}+3}(n)= & (1 / 4) 1^{n}+(i / 4)(i)^{n} \\
& +(-1 / 4)(-1)^{n}+(-i / 4)(-i)^{n}
\end{aligned}
$$

Check that the coefficients of 1^{n} add up to 1 while the other coefficients cancel.

We write $1^{n}, i^{n},(-1)^{n}$, and $(-i)^{n}$ as $\exp (2 \pi i k n)$ with $k=0,1 / 4,1 / 2$, and $3 / 4$, respectively. Then the Fourier transform of $1_{4 \mathbf{Z}+3}$ is the function that sends $0,1 / 4,1 / 2,3 / 4$ to $1 / 4, i / 4,-1 / 4,-i / 4$ (respectively) and vanishes elsewhere, and similarly for the other sets.

For all k in $\mathbf{Q} / \mathbf{Z} \approx \mathbf{Q} \cap[0,1)$, let $\delta(k)$ be the function on \mathbf{Q} / \mathbf{Z} that equals 1 at k and 0 everywhere else. Then

$$
\begin{aligned}
\widehat{1_{\mathbf{Z}}}= & \delta(0) \\
\widehat{1_{2 \mathbf{Z}}}= & (1 / 2) \delta(0)+(1 / 2) \delta(1 / 2) \\
\widehat{1_{4 \mathbf{Z}+1}}= & (1 / 4) \delta(0)+(-i / 4) \delta(1 / 4) \\
& +(-1 / 4) \delta(1 / 2)+(i / 4) \delta(3 / 4) \\
\widehat{1_{4 \mathbf{Z}+3}}= & (1 / 4) \delta(0)+(i / 4) \delta(1 / 4) \\
& +(-1 / 4) \delta(1 / 2)+(-i / 4) \delta(3 / 4)
\end{aligned}
$$

The last two Fourier transforms have non-zero values at $1 / 4$ and $3 / 4$ that cancel each other (cf. the cancellation between $x /\left(1-x^{4}\right)$ and $x^{3} /\left(1-x^{4}\right)$ for the generating function approach).

Fourier proof of Mirsky-Newman theorem:

Write $\mathbf{Z}=\{0,1,2, \ldots\}$ as a disjoint union of the sets $A_{1}=a_{1}+d_{1} \mathbf{Z}, \ldots$, $A_{n}=a_{n}+d_{n} \mathbf{Z}$ so that

$$
1_{\mathbf{Z}}=1_{A_{1}}+\ldots+1_{A_{n}}
$$

whence

$$
\widehat{1_{\mathbf{Z}}}=\widehat{1_{A_{1}}}+\ldots+\widehat{1_{A_{n}}}
$$

Let $D=\max \left(d_{1}, \ldots, d_{n}\right)=d_{m}>1$.
$\widehat{1_{\mathbf{Z}}}$ vanishes at $k=1 / D$ but $\widehat{1_{A_{m}}}$ does not, so there must be another term $\widehat{1_{A_{j}}}$ that cancels it with D dividing d_{j}, and as before, we get $d_{j}=d_{m}$.

This approach generalizes to tilings of \mathbf{Z}^{d} by translates of sublattices of the form $L=a_{1} \mathbf{Z} \times \ldots \times a_{d} \mathbf{Z}$ for positive integers a_{1}, \ldots, a_{d}. We call these straight sublattices of \mathbf{Z}^{d}.

Theorem: Given $n>1$ translates of straight sublattices tiling \mathbf{Z}^{d}, two of the tiles must be translates of each other.

Proof: Write the tiles as $L_{i}+\mathbf{v}_{i}$ with L_{i} a straight sublattice of \mathbf{Z}^{d} and $\mathbf{v}_{i} \in$ \mathbf{Z}^{d}, and let f_{i} be the indicator function of $L_{i}+\mathbf{v}_{i}$, so that $1_{\mathbf{Z}^{d}}=\sum_{i} f_{i}$.
Each f_{i} is periodic on \mathbf{Z}^{d} and so can be written uniquely in the form $\mathbf{x} \mapsto$ $\sum_{\mathbf{k} \in K} c_{\mathbf{k}} \exp (2 \pi i \mathbf{k} \cdot \mathbf{x})$ where K (the "spectrum" of f) is a finite subset of $(\mathbf{Q} \cap[0,1))^{d}$ and the $c_{\mathbf{k}}$'s are non-zero complex numbers.
(The map that send \mathbf{k} to $c_{\mathbf{k}}$ and vanishes outside of K is the discrete Fourier transform \hat{f} of f.)

For $L_{i}=a_{1} \mathbf{Z} \times \ldots \times a_{d} \mathbf{Z}, K$ is $\left\{\left(r_{1} / a_{1}\right.\right.$,
$\left.\ldots, r_{d} / a_{d}\right): 0 \leq r_{i}<a_{i}$ for $\left.1 \leq i \leq d\right\}$.

Take L_{m} with maximal index $a_{1} \cdots a_{d}$ in \mathbf{Z} and let $\mathbf{k}=\left(1 / a_{1}, \ldots, 1 / a_{d}\right)$.
$\widehat{1_{\mathbf{Z}^{d}}}=\sum_{i} \widehat{f_{i}}$ vanishes at \mathbf{k} but $\widehat{f_{m}}$ does not, so there exists $j \neq m$ for which \widehat{f}_{j} does not vanish at \mathbf{k}, and our choice of L_{m} implies $L_{j}=L_{m}$.

What about tilings of \mathbf{Z}^{d} by non-straight sublattices?

In this broader setting the claim can fail. E.g., \mathbf{Z}^{3} can be written as the disjoint union of four sets, each of which is a translated sublattice of \mathbf{Z}^{3}, no two of which are translates of each other:

$$
\begin{gathered}
S_{1}=\{(i, j, k): 2 \mid i \text { and } 2 \not\langle j\} \\
S_{2}=\{(i, j, k): 2 \mid j \text { and } 2 \not\langle k\} \\
S_{3}=\{(i, j, k): 2 \mid k \text { and } 2 \not\langle i\} \\
S_{4}=\{(i, j, k): i \equiv j \equiv k \bmod 2\}
\end{gathered}
$$

Question: Can \mathbf{Z}^{2} be writen as a disjoint union of $n>1$ translates of sublattices of \mathbf{Z}^{2} no two of which are translates of each other?

We hope to use elliptic functions and/or theta functions to resolve this question.

Question: If $\mathbf{Z}^{d}(d \geq 2)$ is written as a disjoint union of $n>1$ translates of sublattices of \mathbf{Z}^{d}, must two of the lattices be related by rotation?
(Note that for our \mathbf{Z}^{3} example, the lattices associated with the sets S_{1}, S_{2}, S_{3} are all related by rotation.)

