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Mirsky and Newman (after a conjecture
of Erdős): If Z is written as a disjoint
union of finitely many two-sided arith-
metic progressions

a1 + d1Z, a2 + d2Z, ..., an + dnZ

with n > 1, then two of the di’s must
be equal.

That is, if we tile the 1-dimensional lat-
tice Z by translates of sublattices of Z,
two of the sublattices must be the same.

I’ll give a Fourier analysis proof and then
show how it yields a generalization of
the Mirsky-Newman result for tilings of
higher-dimensional lattices by sublattices.
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“Book proof” of Mirsky-Newman the-
orem (found by Mirsky and Newman,
rediscovered by Davenport and Rado):

Write N = {0, 1, 2, . . .} as a disjoint
union of the sets a1+d1N, ..., an+dnN

(adjusting the ai’s as needed) so that
1

1 − z
=

za1

1 − zd1
+ . . . +

zan

1 − zdn
.

Let D = dm > 1 be the largest of the
di’s.

The associated term zam

1−zdm
in the RHS

has a pole at exp(2πi/D) but the LHS
does not, so there must be another term

z
aj

1−z
dj

in the RHS that cancels the pole,

with D dividing dj.

But D ≥ dj by choice of D, so dj =
D = dm. ♦
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We prefer to work in the two-sided set-
ting (Z instead of N) and use (discrete)
Fourier transforms instead of generating
functions.

E.g., consider the tiling of Z by 2Z,
4Z + 1, and 4Z + 3.

(With generating functions this corre-
sponds to the decomposition

1

1 − z
=

1

1 − z2
+

z

1 − z4
+

z3

1 − z4

where the last two terms on the RHS
have poles at z = i and at z = −i that
cancel each other.)

We take the discrete Fourier transforms
of the indicator functions of the sets Z,
2Z, 4Z + 1, and 4Z + 3.
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1Z(n) = 1n

12Z(n) = (1/2)1n + (1/2)(−1)n

14Z+1(n) = (1/4)1n + (−i/4)(i)n

+(−1/4)(−1)n + (i/4)(−i)n

14Z+3(n) = (1/4)1n + (i/4)(i)n

+(−1/4)(−1)n + (−i/4)(−i)n

Check that the coefficients of 1n add up
to 1 while the other coefficients cancel.

We write 1n, in, (−1)n, and (−i)n as
exp(2πikn) with k = 0, 1/4, 1/2, and
3/4, respectively. Then the Fourier trans-
form of 14Z+3 is the function that sends
0, 1/4, 1/2, 3/4 to 1/4, i/4,−1/4,−i/4
(respectively) and vanishes elsewhere, and
similarly for the other sets.
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For all k in Q/Z ≈ Q ∩ [0, 1), let δ(k)
be the function on Q/Z that equals 1
at k and 0 everywhere else. Then

1̂Z = δ(0)

1̂2Z = (1/2)δ(0) + (1/2)δ(1/2)

̂14Z+1 = (1/4)δ(0) + (−i/4)δ(1/4)

+(−1/4)δ(1/2) + (i/4)δ(3/4)

̂14Z+3 = (1/4)δ(0) + (i/4)δ(1/4)

+(−1/4)δ(1/2) + (−i/4)δ(3/4)

The last two Fourier transforms have
non-zero values at 1/4 and 3/4 that can-
cel each other (cf. the cancellation be-
tween x/(1 − x4) and x3/(1 − x4) for
the generating function approach).
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Fourier proof of Mirsky-Newman theo-
rem:

Write Z = {0, 1, 2, . . .} as a disjoint
union of the sets A1 = a1 + d1Z, ...,
An = an + dnZ so that

1Z = 1A1
+ . . . + 1An

whence

1̂Z = 1̂A1
+ . . . + 1̂An

.

Let D = max(d1, . . . , dn) = dm > 1.

1̂Z vanishes at k = 1/D but 1̂Am
does

not, so there must be another term 1̂Aj
that cancels it with D dividing dj, and
as before, we get dj = dm. ♦
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This approach generalizes to tilings of
Zd by translates of sublattices of the
form L = a1Z × . . . × adZ for posi-
tive integers a1, . . . , ad. We call these
straight sublattices of Zd.

Theorem: Given n > 1 translates of
straight sublattices tiling Zd, two of the
tiles must be translates of each other.
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Proof: Write the tiles as Li +vi with
Li a straight sublattice of Zd and vi ∈
Zd, and let fi be the indicator function
of Li + vi, so that 1

Zd =
∑

i fi.

Each fi is periodic on Zd and so can
be written uniquely in the form x 7→∑

k∈K ck exp(2πik · x) where K (the
“spectrum” of f ) is a finite subset of
(Q ∩ [0, 1))d and the ck’s are non-zero
complex numbers.

(The map that send k to ck and van-
ishes outside of K is the discrete Fourier
transform f̂ of f .)

For Li = a1Z×. . .×adZ, K is {(r1/a1,
. . . , rd/ad) : 0 ≤ ri < ai for 1 ≤ i ≤ d}.
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Take Lm with maximal index a1 · · · ad
in Z and let k = (1/a1, . . . , 1/ad).

1̂
Zd =

∑
i f̂i vanishes at k but f̂m does

not, so there exists j 6= m for which f̂j
does not vanish at k, and our choice of
Lm implies Lj = Lm. ♦
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What about tilings of Zd by non-straight
sublattices?

In this broader setting the claim can
fail. E.g., Z3 can be written as the dis-
joint union of four sets, each of which is
a translated sublattice of Z3, no two of
which are translates of each other:

S1 = {(i, j, k) : 2|i and 26 |j}

S2 = {(i, j, k) : 2|j and 26 |k}

S3 = {(i, j, k) : 2|k and 26 |i}

S4 = {(i, j, k) : i ≡ j ≡ k mod 2}
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Question: Can Z2 be writen as a dis-
joint union of n > 1 translates of sub-
lattices of Z2 no two of which are trans-
lates of each other?

We hope to use elliptic functions and/or
theta functions to resolve this question.

Question: If Zd (d ≥ 2) is written
as a disjoint union of n > 1 translates
of sublattices of Zd, must two of the
lattices be related by rotation?

(Note that for our Z3 example, the lat-
tices associated with the sets S1, S2, S3
are all related by rotation.)
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