Ehrhart theory + cylic sieving $=$ true love forever?
Jim Propp (JamesPropp@gmail.com)
CCCC LIX, February 16, 2014

Ehrhart theory is about counting lattice points in dilations of polytopes. Cyclic sieving is about counting fixed points of iterates of a map.
Can we combine them?
Given S finite and $\tau: S \rightarrow S$ invertible, with $\tau^{n}=\operatorname{Id}_{S}$, and given $p(t) \in \mathbb{Z}[t]$, say that (S, τ, n, p) exhibits cyclic sieving iff for all $k \geq 0$, the number of fixed points of τ^{k} equals $|p(\exp (2 \pi i k) / n)|$. (This is slightly different from the standard definition.)

Primordial algebraic example: $S=\left\{z \in \mathbb{C}: z^{n}=1\right\}=\left\{\zeta^{k}: 0 \leq k<n\right\}$ with ζ a primitive nth root of unity, $\tau: z \mapsto \zeta z, p(t)=1+t+\ldots+t^{n-1}$. (This is the basis of the discrete Fourier transform.)

There are many examples of cyclic sieving for which S is a set of combinatorial objects and $p(t)=\sum_{s \in S} t^{r(s)}$ where $r: S \mapsto \mathbb{N}$ is a combinatorially natural mapping having nothing obvious to do with τ. In particular, in many cases $r(s)$ is the rank of s under some natural poset structure on S. Example: Let S be the chain with m elements, τ be the involutory anti-automorphism $S \mapsto S$ (so that $n=2$), and $p(t)=1+t+\ldots+t^{m-1}$. Then $(S, \tau, 2, p)$ exhibits cyclic sieving.

Challenge: Construct a theory of cyclic sieving when S is the set of lattice points in a polytope with integer vertices and τ is some linear map of the ambient space carrying S to itself. The theory should be compatible with dilation of the polytope.

Example: Let Π be the polygon in \mathbb{R}^{s} with vertices $(0,0),(1,0)$, and $(0,1)$; let S be the m th dilation of Π, let $n=2$, and take the involution $\tau:(x, y) \mapsto(y, x)$ sending S to itself. If for all $s=(x, y)$ in S we define $r(s)=x+y$ and we take $p(t)=\sum_{s \in S} t^{r(s)}=1+2 t+3 t^{2}+\ldots+(m+1) t^{m}$, we find that $\left|p(-1)^{k}\right|$ equals the number of $s \in S$ with $\tau^{k} s=s$.

