
Math 431, Assignment #9: Solutions

(due 4/26/01)

1. (a) Write Y = eX = g(X) where g(x) = ex. Then g−1(y) = ln y and
d
dy
g−1(y) = 1/y whenever y > 0. So (by Theorem 7.1) fY (y) takes

the value (fX(ln y))/y if y > 0 and vanishes otherwise.

(b) Write Y = lnX = g(X) where g(x) = lnx. Then g−1(y) = ey and
d
dy
g−1(y) = ey. So fY (y) takes the value (fX(ey))ey for all y.

2. (a)

FXY (a) = P (XY ≤ a)

=
∫ ∫

xy≤a
fX(x)fY (y) dx dy

=
∫ ∞

0

∫ a/y

0
fX(x)fY (y) dx dy

=
∫ ∞

0
FX(a/y)fY (y) dy.

Therefore

fXY (a) =
d

da

∫ ∞
0

FX(a/y)fY (y) dy

=
∫ ∞

0
(
d

da
FX(a/y))fY (y) dy

=
∫ ∞

0
((F ′X(a/y))

d

da
(a/y))fY (y) dy

=
∫ ∞

0
(fX(a/y))

1

y
fY (y) dy.

(b) flnX(t) = etfX(et) and flnY (t) = etfY (et), so

fln(XY )(a) = flnX+lnY (a)

=
∫ ∞
−∞

flnX(a− t)flnY (t) dt
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=
∫ ∞
−∞

ea−tfX(ea−t) etfY (et) dt

= ea
∫ ∞
−∞

fX(ea−t)fY (et) dt.

Finally,

fXY (a) = fexp(ln(XY ))(a)

= fln(XY )(ln a)/a

= eln a
(∫ ∞
−∞

fX(e(ln a)−t)fY (et) dt
)
/a

= a
(∫ ∞
−∞

fX(ae−t)fY (et) dt
)
/a

=
∫ ∞
−∞

fX(ae−t)fY (et) dt.

To see that the answer we got in part (a) agrees with the answer we
got in part (b), put y = et: then we have dy = et dt, and

fXY (a) =
∫ ∞
−∞

fX(ae−t)
1

et
fY (y) et dt;

the et and 1/et cancel, giving∫ ∞
−∞

fX(ae−t)fY (et) dt.

3. Chapter 6, problem 6: The wording of the problem is slightly ambigu-
ous. The use of the word “spotted” suggests that we have to actually
test the defective ones, even though the rest of the problem says we only
have to “identify” the defectives (which in particular would permit us
to deduce their identity without testing them). I’ll solve the problem
both ways. Let N1 and N2 denote the number of tests required until
you identify the first and second defectives, respectively, under the as-
sumption that you can use deduction, and let M1 and M2 denote the
number of tests required until you actually test the first and second
defectives, respectively.

It is convenient to model this problem with a sample space with
(

5
2

)
=

10 equally likely outcomes, according to the locations of the two de-
fective transistors: DDGGG, DGDGG, etc., where D stands for a
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defective transistor and G stands for a good transistor. Here the order
of the D’s and G’s corresponds to the order in which the units are
tested. (Technical point: under the first interpretation, there will be
one or two units that don’t get tested, because their status is deduced,
so we can just list their status at the end. They’ll have the same status
as one another, so we don’t have to worry about which is fourth and
which is fifth.)

DDGGG: N1 = 1, N2 = 1; M1 = 1, M2 = 1.

DGDGG: N1 = 1, N2 = 2; M1 = 1, M2 = 2.

DGGDG: N1 = 1, N2 = 3; M1 = 1, M2 = 3.

DGGGD: N1 = 1, N2 = 3; M1 = 1, M2 = 4.

GDDGG: N1 = 2, N2 = 1; M1 = 2, M2 = 1.

GDGDG: N1 = 2, N2 = 2; M1 = 2, M2 = 2.

GDGGD: N1 = 2, N2 = 2; M1 = 2, M2 = 3.

GGDDG: N1 = 3, N2 = 1; M1 = 3, M2 = 1.

GGDGD: N1 = 3, N2 = 1; M1 = 3, M2 = 2.

GGGDD: N1 = 3, N2 = 0; M1 = 4, M2 = 1.

So the joint pmf of N1 and N2 assigns probability 1
10

= 0.1 to each of the
pairs (1, 1), (1, 2), (2, 1), (3, 0) and probability 2

10
= 0.2 to each of the

pairs (1, 3), (2, 2), (3, 1), while the joint pmf of M1 and M2 assigns prob-
ability 1

10
= 0.1 to all of the pairs (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2),

(2, 3), (3, 1), (3, 2), (4, 1).

4. Chapter 6, problem 7: The probability that X1 equals i and X2 equals
j is the probability of getting i failures, then a success, then j more
failures, and then another success. So pX1,X2(i, j) = qipqjp = p2qi+j,
where q = 1− p.

5. Chapter 6, problem 11: The probability that, of the 5 customers, 2
will buy an ordinary set, 1 will buy a color set, and 2 will leave empty-
handed is governed by a multinomial distribution, and is therefore equal
to (

5

2, 1, 2

)
(.45)2(.15)1(.40)2 =

5!

2!1!2!
(.45)2(.15)1(.40)2 = .1458.
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(By the way: since when is a black and white considered “ordinary”?
I’ll bet Ross must be a fair bit older than I am!)

6. Chapter 6, problem 18: Geometrical solution: The pair (X, Y ) is uni-
formly distributed over the rectangle {(x, y) : 0 ≤ x ≤ L/2, L/2 ≤ y ≤
L}. The portion of this rectangle that satisfies the complementary con-
dition y − x ≤ L/3 is the triangle with vertices (L/6, L/2), (L/2, L/2),
(L/2, 5L/6). This is a right triangle with base L/3 and height L/3,
so its area is (1/2)(L/3)(L/3) = L2/18. The full rectangle has area
(L/2)(L/2) = L2/4. Thus the probability that Y − X ≤ L/3 is
(L2/18)/(L2/4) = 4/18 = 2/9, and the probability that Y −X > L/3
is 1− 2/9 = 7/9.

Calculus solution: Clearly the answer doesn’t depend on L, so let’s take
L = 6 for simplicity (to avoid fractions throughout most of the calcula-
tion). We can write the desired probability as

∫∫
R fX,Y (x, y)dxdy, where

R is the region {(x, y) : 0 ≤ x ≤ 3 ≤ y ≤ 6, y−x ≥ 2}. (Note that I’ve
changed “greater than” to “greater than or equal to”, but since we’re
dealing with jointly continuous random variables, this doesn’t matter.)
The integrand can be written as fX(x)fY (y) = 1

3
1
3

= 1
9
. We’ll just re-

place this by 1, and divide the integral by 9 when we’re done. For each
value of x, the point (x, y) lies in R if y ranges between two values, but
these values depend on what x is. For x between 0 and 1, the range for
y is from 3 to 6; for x between 1 and 3, the range for y is from x+ 2 to
6. So our area integral splits up as two iterated integrals:∫ ∫

R
fX,Y (x, y) dx dy =

∫ 1

0

∫ 6

3
1 dy dx+

∫ 3

1

∫ 6

x+2
1 dy dx = 7,

giving the final answer 7/9 as before.

7. Chapter 6, problem 22:

(a) No, since the joint pdf does not factor.

(b) fX(x) =
∫ 1

0 (x + y) dy = x + 1
2

for 0 < x < 1 (and vanishes
otherwise).

(c)
∫∫
x+y<1(x+y)dxdy =

∫ 1
0

∫ 1−x
0 (x+y)dydx =

∫ 1
0 (xy+ 1

2
y2)|1−x0 dx =∫ 1

0 (x(1 − x) + 1
2
(1 − x)2) dx =

∫ 1
0 (1

2
− 1

2
x2) dx = (1

2
x − 1

6
x3)|10 =

1
2
− 1

6
= 1

3
.
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8. Chapter 6, problem 28:

P (X1/X2 < a) =
∫ ∞

0

∫ ay

0
λ1e

−λ1xλ2e
−λ2y dx dy

=
∫ ∞

0

(
1− e−λ1ay

)
λ2e

−λ2y dy

= 1− λ2

λ2 + λ1a

=
λ1a

λ1a+ λ2

.

9. Chapter 6, problem 30: The number of typographical errors on each
page should approximately be Poisson distributed and the sum of in-
dependent Poisson random variables is also a Poisson random variable.
So the parameter λ for errors-per-ten-pages is 10× 0.2 = 2. So for (a)
we get e−220

0!
= e−2 ≈ .1353 while for (b) we get 1 − e−220

0!
− e−221

1!
=

1− e−2 − 2e−2 = 1− 3e−2 ≈ .5940.

10. Chapter 6, theoretical exercise 9: P (min(X1, . . . , Xn) > t) = P (X1 >
t, . . . , Xn > t) = P (X1 > t) · · ·P (Xn > t) = e−λt · · · e−λt = e−nλt, so
Fmin(X1,...,Xn)(t) = 1 − e−nλt, thus showing that the minimum of the n
exponential random variables with rate λ is exponential with rate nλ.

11. Treating X +Y +Z as (X +Y ) +Z, we get fX+Y+Z(a) =
∫ 1

0 fX+Y (a−
y) dy. There are two ways to proceed.

First method: Change variables to t = a − y, obtaining fX+Y+Z(a) =∫ a
a−1 fX+Y (t) dt. If we sketch fX+Y (using the formula calculated in

Example 3a in Chapter 6), we find that there are three non-trivial
cases to consider. If 0 ≤ a ≤ 1, then the area under the graph of
fX+Y (t) between t = a − 1 and t = a is just a triangle with vertices
(0, 0), (a, 0), and (a, a), with area a2/2. If 1 ≤ a ≤ 2, then the area
under the graph of fX+Y (t) between t = a − 1 and t = a is equal
to the full area under the graph between t = 0 and t = 2 (which is
1) minus the areas of two isosceles right triangles, one with legs of
length a − 1 and the other with legs of length 2 − a. So this area is
1− (a− 1)2/2− (2− a)2/2 = −a2 + 3a− 3

2
. If 2 ≤ a ≤ 3, then the area

under the graph of fX+Y (t) between t = a− 1 and t = a is an isosceles
triangle with legs of length 2 − (a − 1) = 3 − a, with area (3 − a)2/2.
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(If a is less than 0 or greater than 3, the integrand vanishes between
a− 1 and a, and so the integral vanishes.) Therefore

fX+Y+Z(a) =


1
2
a2 if 0 ≤ a ≤ 1,
−a2 + 3a− 3

2
if 1 ≤ a ≤ 2,

1
2
a2 − 3a+ 9

2
if 2 ≤ a ≤ 3,

0 otherwise.

As a way of checking your calculations, you should note that the func-
tions agree at the juncture-points a = 0, 1, 2, 3 and that our formulas
yield fX+Y+Z(a) = fX+Y+Z(3 − a), as predicted by symmetry consid-
erations. (If X, Y, Z are each distributed symmetrically around 1

2
, then

X + Y + Z must be distributed symmetrically around 1
2

+ 1
2

+ 1
2

= 3
2
.)

Second method: Write fX+Y as g for short. There are three cases to
consider. If 0 < a < 1,

∫ 1
0 g(a−y)dy =

∫ a
0 g(a−y)dy+

∫ 1
a g(a−y)dy =∫ a

0 a − y dy +
∫ 1
a 0 dy = . . . = 1

2
a2. If 1 < a < 2,

∫ 1
0 g(a − y) dy =∫ a−1

0 g(a−y)dy+
∫ 1
a−1 g(a−y)dy =

∫ a−1
0 2− (a−y)dy+

∫ 1
a−1 a−y dy =

. . . = −a2 + 3a − 3
2
. If 2 < a < 3,

∫ 1
0 g(a − y) dy =

∫ a−2
0 g(a − y) dy +∫ 1

a−2 g(a− y) dy =
∫ a−2

0 0 dy +
∫ 1
a−2 2− (a− y) dy = . . . = 1

2
a2 − 3a+ 9

2
.
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