
Math 431, Assignment #6: Solutions

(due 3/29/01)

1. E((X − t)2) = E(X2 − 2tX + t2) = E(X2)− 2tE(X) + t2. Setting the
derivative equal to zero, we find that this function of t has a critical
point at t = E(X), and for this value of t, E((X − t)2) takes the value
Var(t). To see that this unique critical point is the global minimum,
we use the second derivative test: the second derivative of E((X− t)2),
evaluated at t = E(X), is 2, which is positive. Alternatively, note that
the graph of f(t) = E(X2)− 2tE(X) + t2 is just a parabola, and that
the coefficient of t2 is positive.

2. First solution: For all k between 0 and n, the probability of the event
{X = k} is

(
n
k

)
pkqn−k, where q = 1 − p. Hence the expected value of

αX is
∑n
k=0

(
n
k

)
pkqn−kαk, which can be rewritten as

∑n
k=0

(
n
k

)
(pα)kqn−k.

By the binomial theorem, this is is (pα + q)n.

Second solution: Write X = Y1 + ... + Yn, where Y1, ...Yn are indepen-
dently identically distributed Bernoulli random variables, each with
parameter p. Then αX = αY1 · · ·αYn . Since the random variables
αY1 , ..., αYn , like the random variables Y1, ..., Yn, are independent of one
another, we see that E(αX) = E(αY1)E(αY2) · · ·E(αYn). Since each
Yi takes the value α1 = α with probability p and the value α0 = 1
with probability q, the expected value of αYi is αp+ q, and so we have
E(αX) = (αp + q)n.

3. V is a negative binomial random variable with parameters p = 1/6,
r = 3. W is a geometric random variable with parameter p = 1/6.

(a) Method 1:

P (V = 6 | V > 5) = P (V = 6 and V > 5)/P (V > 5)

= P (V = 6)/P (V > 5)

= P (V = 6)/(1− P (V = 3)− P (V = 4)− P (V = 5)).
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Applying the formula P (V = k) =
(
k−1
3−1

)
p3qk−3 with p = 1/6 and

q = 5/6, and with k taking the values 5, 6, 7, and 8, we substitute
to get P (V = 6 | V > 5) = 1/36.

Method 2: As before, P (V = 6 | V > 5) = P (V = 6)/P (V > 5).

P (V = 6) =
(

5
2

)
p3q3 = 10 × 53/66. The event V > 5 can happen

in three different ways, according to whether there are 0, 1, or
2 successes in the first 5 trials. Hence P (V > 5) =

(
5
0

)
p0q5 +(

5
1

)
p1q4 +

(
5
2

)
p2q3 = (55 + 5× 54 + 10× 53)/65. So, cancelling out

a factor of 53/65, we get P (V = 6 | V > 5) = P (V = 6)/P (V >
5) = (10/6)/(52 + 5× 5 + 10) = (10/6)/60 = 1/36.

(b) This time, Method 1 would be very impractical, since it would re-
quire writing P (V > 40) as 1−∑40

k=3 P (V = k). But with Method

2, we have P (V > 40) =
(

40
0

)
p0q40 +

(
40
1

)
p1q39 +

(
40
2

)
p2q38 =

(540 + 40 × 539 + 780 × 538)/640. Since P (V = 41) =
(

40
2

)
p3q38 =

780 × 538/641, we can divide as before to get P (V = 41 | V >
40) = P (V = 41)/P (V > 40) = (780/6)/(52 + 40 × 5 + 780) =
26/201 = .129353....

(c) The memorylessness of a geometric random variable tells us that
P (W = 6 | W > 5) = P (W = 1) = P (success on 1st trial) = 1/6.

(d) The memorylessness of a geometric random variable tells us that
P (W = 41 | W > 40) = P (W = 1) = P (success on 1st trial) =
1/6.

(e) In both (a) and (b), we know that we have not yet seen the third
success, but we do not know whether the first two successes have
occurred yet. But in (a), since there have been only five trials, it
is very unlikely that there have already been two successes, and
therefore very unlikely that the third success will happen on the
next trial. In (b), it is fairly likely that the first two successes have
already occurred, and therefore the probability is much closer to
1/6 that the third success will occur on the next trial.

If we consider P (V = 1001 | V > 1000), we realize that after 1000
trials, it is extremely probably that the first two successes have
already occurred, and therefore we would have P (V = 1001 | V >
1000) extremely close to 1/6.
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(f) We can infer from the memorylessness of geometric random vari-
ables that these two conditional probabilities are equal.

4. P (X = k) =
(
k−1
r−1

)
pr(1− p)k−r, so logP (X = k) = log

(
k−1
r−1

)
+ r log p+

(k − r) log(1 − p). This has a critical point where 0 = r
p
− k−r

1−p , which

happens exactly when p = r/k. This local maximum is in fact a global
maximum, since there is only one critical point and since the value
achieved there is greater than the value at the endpoints (leaving aside
the easy case k = r, which can be handled separately).

5. (a) 1− e−3.5 − 3.5e−3.5 = 1− 4.5e−3.5 ≈ .864

(b) 4.5e−3.5 ≈ .136

Since each flight has a small probability of crashing it seems reason-
able to suppose that the number of crashes is approximately Poisson
distributed.

6. (a) The probability that an arbitrary couple were both born on April
30 is (1/365)2, assuming independence and an equal chance of
having been born on any given date. Hence, the number of such
couples is approximately Poisson with mean 80, 000/(365)2 ≈ .6.
Therefore, the probability that at least one pair were both born
on this date is approximately 1− e−.6 ≈ .451.

(b) The probability that an arbitrary couple were both born on the
same day of the year is 1/365. Hence, the number of such couples
is approximately Poisson with mean 80, 000/365 ≈ 219.18. There-
fore, the probability that at least one pair were both born on the
same date is 1− e−219.18 ≈ 1.

Note: For part (b), the “true” probability of there being no two partners
born on the same day as each other is (1 − 1

365
)80,000, whose (natural)

logarithm is 80, 000 ln(1− 1
365

) ≈ −219.48. Note how close 1− e−219.48

is to close 1 − e−219.18. So we see that the Poisson approximation is a
good assumption for part (b), even though pn is far from 1.

7. 1
2
e−3 + 1

2
e−4.2 ≈ .0324

8. (a) 1− e−3 − 3e−3 − e−3 32

2
= 1− 17

2
e−3 ≈ .577
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(b) P (X ≥ 3 | X ≥ 1) = P (X≥3)
P (X≥1)

=
1− 17

2
e−3

1−e−3 ≈ .607

9. logP (X = k) = −λ + k log λ − log(k!). We have 0 = ∂
∂λ

logP (X =
k) = −1 + k

λ
exactly when λ = k.

10. P (X = n + k | X > n) = P (X=n+k)
P (X>n)

= p(1−p)n+k−1

(1−p)n = p(1 − p)k−1.
Intuitively, if the first n trials are failures, then at that point it is as if
we are beginning anew.
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