
Math 431, Assignment #3: Solutions

(due 2/15/01 and 2/22/01)

1. If the initial outcome is i and the player wins, then one of the following
must occur: the initial outcome is i and the player wins on the 1st roll;
the initial outcome is i and the player wins on the 2nd roll; the initial
outcome is i and the player wins on the 3rd roll; etc. The events Ei,n
(with i fixed and n varying) are disjoint, with union

⋃∞
n=1 Ei,n = Ei;

so, by Axiom 3 (page 31), P (Ei) =
∑∞
n=1 P (Ei,n). That is, P (Ei) (the

probability that the initial outcome is i and the player wins) is equal
to the sum of the probabilities P (Ei,n) (the probability that the initial
outcome is i and the player wins on the nth roll).

If i is 2, 3, or 12, the player loses instantly, so P (Ei,n) = 0 for all
n. If i is 7, the player wins instantly, so P (Ei,1) = 6/36 = 1/6 and
P (Ei,n) = 0 for all n > 1. If i is 11, the player wins instantly, so
P (Ei,1) = 2/36 = 1/18 and P (Ei,n) = 0 for all n > 1. This leaves the
cases i = 4, 5, 6, 8, 9, 10. In these cases, we may as well start the
infinite sum at n = 2 rather than n = 1, since the game cannot end
before the second roll; that is, P (Ei,1) = 0 when i is 4, 5, 6, 8, 9, or 10.

We will consider the first three cases together. There are 36n different
ways for n rolls of the pair of dice to land. In how many of these
outcomes do we have an i on the first roll and an i on the nth roll,
and with each intervening roll of the pair of dice yielding neither an
i nor a 7? The number of ways to roll an i on the first roll is i − 1;
the number of ways to roll an i on the last roll is i − 1; and on each
intervening roll, the number of ways to roll something that is neither
an i nor a 7 is 36 − (i − 1) − 6 = 31 − i. So the total number of
outcomes that contribute to the event Ei,n is (i − 1)2(31 − i)n−2, and
P (Ei,n) = (i−1)2(31−i)n−2/36n. Summing the geometric series, we get

P (Ei) =
∑∞
n=2(i−1)2(31−i)n−2/36n = (i−1)2

362 /(1− 31−i
36

) = (i−1)2

36(36−(31−i)) =
(i−1)2

36(i+5)
, which takes on the respective values 9

36(9)
= 1

36
, 16

36(10)
= 2

45
, and

25
36(11)

= 25
396

for i = 4, i = 5, and i = 6.



(Those of you who have already read ahead to Chapter 3 may have done
this a different way, using products of probabilities instead of ratios of

cardinalities. That is, instead of computing P (Ei,n) as (i−1)2(31−i)n−2

36n
,

you obtained it as ( i−1
36

)(31−i
36

)n−2( i−1
36

).)

The cases 8,9,10 yield the same probabilities as the cases 4,5,6, in re-
verse order. That is because the number of ways to roll an 8 is the
same as the number of ways to roll a 6, etc.

So,
∑12
i=2 P (Ei) = 0 + 0 + 1/36 + 2/45 + 25/396 + 1/6 + 25/396 + 2/45 +

1/36 + 1/18 + 0 = 244/495 = .49292929.... It’s no coincidence that this
is so close to one-half; no doubt the rules of craps evolved so as to make
the game very close to fair.

2. (a) (
(

5
3

)
+
(

6
3

)
+
(

8
3

)
)/
(

19
3

)
= (10 + 20 + 56)/969 = 86/969 = .088751....

(Alternatively,
(

5
3

)
could be replaced by

(
5
3

)(
6
0

)(
8
0

)
, and so on.)

(b)
(

5
1

)(
6
1

)(
8
1

)
/
(

19
3

)
= 5 · 6 · 8/969 = 240/969 = 80/323 = .247678....

(a′) (53 + 63 + 83)/(193) = (125 + 216 + 512)/6859 = 853/6859 =
.124362...

(b′) (5 · 6 · 8 · 3!)/(193) = 1440/6859 = .209943.... (The 3! comes from
the fact that a red ball, blue ball, and green ball can be drawn in 3!
different orders: RBG, BRG, etc.)

3. To make the problem one in which all the outcomes in the sample space
are equally likely, it helps to imagine that the woman keeps trying keys
until she has gone through k of them, regardless of whether or not she’s
succeeded in opening the door. This applies to both parts (a) and (b).

(a) The number of outcomes is

Pn,k = n(n− 1)(n− 2) · · · (n− k + 2)(n− k + 1).

Of these, the favorable outcomes are those in which the first k− 1 keys
are all wrong and the kth key is right; the number of such outcomes is
(n− 1)(n− 2) · · · (n− k+ 1)(1). Dividing this by Pn,k we get 1/n. (Do
you see a simpler way to get this answer?)

(b) This time the number of outcomes is nk, and the number of favor-
able outcomes is (n− 1)k−1, so the desired probability is (n−1

n
)k−1/n.



4. With a against b, a has a probability of 5/9 of wininng, since out of
the 9 equally likely outcomes, five result in a win for spinner a: (5,3),
(5,4), (9,3), (9,4), and (9,8). With b against c, b has a probability of
5/9 of wininng, since out of the 9 equally likely outcomes, five result in
a win for spinner b: (4,2), (3,2), (8,2), (8,6), and (8,7). With c against
a, c has a probability of 5/9 of wininng, since out of the 9 equally likely
outcomes, five result in a win for spinner c: (2,1), (6,1), (6,5), (7,1),
and (7,5). So, if you’re player B, you can win with probability 5/9 by
always choosing the spinner that’s clockwise from the one that player
A just chose. It’s better to be player B (the second player).

It’s amusing to note that the situation changes dramatically if there are
three players. Then there are 27 different outcomes, of which 11 lead
to victory for the player with disk a, 8 lead to victory for the player
with disk b, and 8 lead to victory for the player with disk c. So in the
three-player version, it’s best to be the first player (and to pick disk
a)!

5. Part (a), first solution: Let E be the event “at least one die lands
on a 6” and let F be the event “the dice land on different numbers”.
Then P (F ) = 6·5

36
= 30

36
and P (EF ) = 1·5+5·1

36
= 10

36
, so P (E|F ) =

P (EF )/P (F ) = 10
36
/30

36
= 10/30 = 1/3.

Part (a), second solution: Conditional upon the dice landing on two
different numbers, the two specific numbers that we see are equally
likely to be ANY two of the six possibilities. So when we condition
upon seeing two different numbers on the two rolls, we see that the two
numbers that we get (viewed as an unordered pair) are governed by

the uniform distribution on the set of all
(

6
2

)
pairs of numbers between

1 and 6. So the question is equivalent to: If we choose two numbers
(without replacement) from 1, . . . , 6, what’s the chance that one of

them is a 6? In this new problem, the sample space has size
(

6
2

)
= 15

and the set of “unfavorable” outcomes (those in which neither of the

two numbers is a 6) has size
(

5
2

)
= 10; hence the probability of an

unfavorable outcome is 10/15 = 2/3 and the probability of a favorable
outcome is 1− 2/3 = 1/3.

Part (b), first solution: Use the same notation as above, so that E is the
event “at least one die lands on a 6” and F c is the event “the dice land



on the same numbers”. Then P (F c) = 1− 5
6

= 1
6

and P (EF c) = 1
36

, so
P (E|F c) = P (EF c)/P (F ) = 1

36
/1

6
= 6/36 = 1/6.

Part (b), second solution: Conditional upon the dice landing on the
same number twice, the specific number that we see is equally likely
to be ANY of the six possibilities. So the probability that the specific
number that we see twice is a 6 must be 1/6.

6. Part (a), first solution: The probability that the first ball is white is
6
15

(since 6 of the 15 balls in the urn are white). The probability that
the second ball is white, given that the first was white, is 5

14
(since 5 of

the 14 balls remaining in the urn are white). The probability that the
third ball is black, given that the first two were white, is 9

13
(since 9 of

the 13 balls remaining in the urn are black). The probability that the
fourth ball is black, given that the first two were white and the third
was black, is 8

12
(since 8 of the 12 balls remaining in the urn are black).

So, by the multiplication rule, the probability that the first two balls
are white and the next two are black is 6

15
5
14

9
13

8
12

= 6
91

.

Part (a), second solution: Instead of making an ordered selection of
four balls without replacement, one could make an unordered selec-
tion of four balls and then order them. (This would be a different
setup, but the outcomes would all have the same probabilities under
this setup as they would under the original setup, so we can use this
alternative setup for doing our calculations.) The probability that two
of the four balls that are chosen are white and the other two are black is(

6
2

)(
9
2

)
/
(

15
4

)
= 15 · 36/1365 = 36/91. If one orders those four balls ran-

domly (assuming two are white and two are black), there are 6 equally
likely orderings, only 1 of which is white-white-black-black. So the
conditional probability of drawing the balls in the order white-white-
black-black, given that two are white and two are black, is 1/6. Hence,
by the multiplication rule, the probability that the first two balls are
white and the next two balls are black is 36

91
1
6

= 6
91

.

Part (b), first solution: The probability that the first ball is black is
9
15

(since 9 of the 15 balls in the urn are black). The probability that
the second ball is white, given that the first was black, is 6

14
(since 6 of

the 14 balls remaining in the urn are white). The probability that the
third ball is black, given that the first was black and the second was



white, is 8
13

(since 8 of the 13 balls remaining in the urn are black). The
probability that the fourth ball is white, given that the first ball was
black, the second was white, and the third was black, is 5

12
(since 5 of

the 12 balls remaining in the urn are black). So, by the multiplication
rule, the probability that the first two balls are white and the next two
are black is 9

15
6
14

8
13

5
12

= 6
91

, as before.

Part (b), second solution: Let’s make an unordered selection of four
balls and then order them, as in the alternative solution to part (a).
As in (a), the probability of drawing two balls of each color is 36/91.
There are 6 equally likely orderings of the four balls, only 1 of which is
black-white-black-white. So the conditional probability of drawing the
balls in the order black-white-black-white, given that two are white and
two are black, is 1/6. Hence, by the multiplication rule, the probability
that the first two balls are white and the next two balls are black is
36
91

1
6

= 6
91

.

7. Let E be the event of an ectopic pregnancy, and S be the event that
the mother smokes. We are given that P (E|S) = 2P (E|Sc) and
P (S) = 0.32. Write P (E|Sc) = p and P (E|S) = 2p. By Bayes’
Theorem, P (S|E) = P (S)P (E|S)/[P (S)P (E|S) + P (Sc)P (E|Sc)] =
2pP (S)/[2pP (S) + pP (Sc)] = 2P (S)/[2P (S) + P (Sc)] (note that the
p’s cancel!), which equals 0.64/[0.64 + 0.68] = 0.4848....

8. Initially, there are 4 aces and 48 non-aces in the deck, so P (E1) =(
4
1

)(
48
12

)
/
(

52
13

)
= 9139/20825. If the first hand has 1 ace, then there

are 3 aces and 36 non-aces remaining in the deck, so P (E2|E1) =(
3
1

)(
36
12

)
/
(

39
13

)
= 325/703. If the first and second hands have 1 ace

apiece, then there are 2 aces and 24 non-aces remaining in the deck, so
P (E3|E1E2) =

(
2
1

)(
24
12

)
/
(

26
13

)
= 13/25. Finally, if the first three hands

have 1 ace apiece, then there are 1 ace and 12 non-aces remaining in the
deck, so P (E4|E1E2E3) =

(
1
1

)(
12
12

)
/
(

13
13

)
= 1 (which in fact is obvious: if

the first three players each got 1 of the 3 aces, the fourth player is forced
to get exactly 1 ace). Putting all this together, we get P (E1E2E3E4) =
P (E1)P (E2|E1)P (E3|E1E2)P (E4|E1E2E3) = 9139

20825
325
703

13
25

= 2197
20825

, which
is approximately 0.105498.

9. If P (A)/(1 − P (A)) = α, then P (A) = (1 − P (A))α = α − P (A)α,



so P (A) + P (A)α = α. Writing this as P (A)(1 + α) = α, we get
P (A) = α

1+α
. (Check: When the odds ratio is 1 : 1, we get α = 1; the

formula gives P (A) = 1
1+1

= 1
2
, which is correct.)


