Math 431, Assignment \#11: Solutions

(due 5/10/01)

1. Chapter 7 , problem 32, via the two specified methods:
(a) Let X_{i} be the indicator random variable for the event
$\{$ roll i lands on 1$\}$
and let Y_{i} be the indicator random variable for the event
$\{$ roll i lands on 2$\}$.
$\operatorname{Cov}\left(X_{i}, Y_{j}\right)=E\left(X_{i} Y_{j}\right)-E\left(X_{i}\right) E\left(Y_{j}\right)$, which equals $\frac{1}{36}-\frac{1}{36}=0$ when $i \neq j$ (since the i th roll and j th roll are independent) and equals $-\frac{1}{36}$ when $i=j$ (since $X_{i} Y_{j}=0$ when $i=j$). By the bilinearity of covariance, $\operatorname{Cov}\left(\sum_{i} X_{i}, \sum_{j} Y_{j}\right)=\sum_{i} \sum_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)=$ $-\frac{n}{36}$.
(b) Define Z_{i} to be the number of rolls that show an i, for i going from 1 to 6 . We have $\operatorname{Var}\left(Z_{1}+\ldots+Z_{6}\right)=0$ since $Z_{1}+\ldots+$ Z_{6} is always n. Hence we have $0=\operatorname{Cov}\left(Z_{1}+\ldots+Z_{6}, Z_{1}+\right.$ $\left.\ldots+Z_{6}\right)=6 \operatorname{Cov}\left(Z_{1}, Z_{1}\right)+30 \operatorname{Cov}\left(Z_{1}, Z_{2}\right)$ (since, when you expand $\operatorname{Cov}\left(Z_{1}+\ldots+Z_{6}, Z_{1}+\ldots+Z_{6}\right)$ into 36 terms, all six of the terms $\operatorname{Cov}\left(Z_{i}, Z_{i}\right)$ have the same value as one another, and so do all thirty of the terms $\operatorname{Cov}\left(Z_{i}, Z_{j}\right)$ with $\left.i \neq j\right)$. Z_{1} is a binomial random variable, so $\operatorname{Cov}\left(Z_{1}, Z_{1}\right)=\operatorname{Var}\left(Z_{1}\right)=n p(1-p)=\frac{5 n}{36}$. Therefore $\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=-\frac{6}{30} \frac{5 n}{36}=-\frac{n}{36}$.
2. Chapter 7, problem 41:
(a) $\operatorname{Cov}\left(X_{1}+X_{2}, X_{2}+X_{3}\right)=\operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{2}, X_{2}\right)+$ $\operatorname{Cov}\left(X_{2}, X_{3}\right)=0+0+1+0=1, \operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+$ $\operatorname{Var}\left(X_{2}\right)=1+1=2$, and $\operatorname{Var}\left(X_{2}+X_{3}\right)=\operatorname{Var}\left(X_{2}\right)+\operatorname{Var}\left(X_{3}\right)=$ $1+1=2$, so

$$
\rho_{X_{1}+X_{2}, X_{2}+X_{3}}=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2} .
$$

(b) $\operatorname{Cov}\left(X_{1}+X_{2}, X_{3}+X_{4}\right)=\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{1}, X_{4}\right)+\operatorname{Cov}\left(X_{2}, X_{3}\right)+$ $\operatorname{Cov}\left(X_{2}, X_{4}\right)=0+0+0+0=0$ and $\operatorname{Var}\left(X_{3}+X_{4}\right)=\operatorname{Var}\left(X_{3}\right)+$ $\operatorname{Var}\left(X_{4}\right)=1+1=2$, so

$$
\rho_{X_{1}+X_{2}, X_{3}+X_{4}}=\frac{0}{\sqrt{2} \sqrt{2}}=0 .
$$

3. Chapter 7, problem 46:

$$
f_{X \mid Y}(x \mid y)=\frac{e^{-x / y} e^{-y} / y}{\int_{0}^{\infty} e^{-x / y} e^{-y} / y d x}=e^{-x / y} / y, \quad 0<x<\infty
$$

Hence, given $Y=y, X$ is exponential with mean y, and so $E\left(X^{2} \mid Y=\right.$ $y)=2 y^{2}$ (see Example 5a).
4. Chapter 7, problem 49: Let X denote the number of days until the prisoner is free, and let I denote the initial door chosen. Then

$$
\begin{aligned}
E(X) & =E(X \mid I=1)(.5)+E(X \mid I=2)(.3)+E(X \mid I=3)(.2) \\
& =(2+E(X))(.5)+(4+E(X))(.3)+(1)(.2)
\end{aligned}
$$

Therefore $E(X)=12$.
5. Chapter 7, problem 59:
(a) Number the red balls and the blue balls. Let X_{i} equal 1 if the i th red ball is selected and let it be 0 otherwise; similarly, let Y_{j} equal 1 if the j th blue ball is selected and let it be 0 otherwise. We have $X=\sum_{i} X_{i}$ and $Y=\sum_{j} X_{j}$, so

$$
\operatorname{Cov}(X, Y)=\operatorname{Cov}\left(\sum_{i} X_{i}, \sum_{j} Y_{j}\right)=\sum_{i} \sum_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right),
$$

a sum of 80 identical terms. Now, for all i, j

$$
E\left(X_{i}\right)=E\left(Y_{j}\right)=12 / 30
$$

and

$$
\begin{aligned}
E\left(X_{i} Y_{j}\right) & =P(\text { red ball } i \text { and blue ball } j \text { are selected }) \\
& =\binom{28}{10} /\binom{30}{12} .
\end{aligned}
$$

Thus $\operatorname{Cov}(X, Y)=80\left[\binom{28}{10} /\binom{30}{12}-(12 / 30)^{2}\right]=-96 / 145$.
(b)

$$
E(X Y \mid X)=X E(Y \mid X)=X(12-X) 8 / 20
$$

where the second equality above follows since, given that x red balls have been selected, there are $12-x$ additional balls to be selected from among the 20 non-red balls, only 8 of which are blue. Now, since X is a hypergeometric random variable it follows that $E(X)=12(10 / 30)=12(1 / 3)=4$ and $E\left(X^{2}\right)=\operatorname{Var}(X)+$ $[E(X)]^{2}=\frac{18}{29} 12(1 / 3)(2 / 3)+4^{2}=512 / 29$, so

$$
\begin{aligned}
E(X Y) & =E(E(X Y \mid X)) \\
& =E(X(12-X) 8 / 20) \\
& =\frac{8 \cdot 12}{20} E(X)-\frac{8}{20} E\left(X^{2}\right) \\
& =\frac{96}{5}-\frac{1024}{145} \\
& =\frac{352}{29}
\end{aligned}
$$

and since $E(Y)=12(8 / 30)=16 / 5$, we get $\operatorname{Cov}(X, Y)=352 / 29-$ $(4)(16 / 5)=-96 / 145$.
6. Chapter 7, problem 60:
(a) $E(X)=E(X \mid$ type 1$)(p)+E(X \mid$ type 2$)(1-p)=p \mu_{1}+(1-p) \mu_{2}$.
(b) Let I be the type (a random variable, so that μ_{I} and σ_{I} are also random variables). $E(X \mid I)=\mu_{I}, \operatorname{Var}(X \mid I)=\sigma_{I}^{2}, E\left(\mu_{I}\right)=p \mu_{1}+$ $(1-p) \mu_{2}, E\left(\mu_{I}^{2}\right)=p \mu_{1}^{2}+(1-p) \mu_{2}^{2}$, and $\operatorname{Var}(X)=E(\operatorname{Var}(X \mid I))+$ $\operatorname{Var}(E(X \mid I))=E\left(\sigma_{I}^{2}\right)+\operatorname{Var}\left(\mu_{I}\right)=E\left(\sigma_{I}^{2}\right)+E\left(\left(\mu_{I}\right)^{2}\right)-\left(E\left(\mu_{I}\right)\right)^{2}=$ $p \sigma_{1}^{2}+(1-p) \sigma_{2}^{2}+p \mu^{2}+(1-p) \mu_{2}^{2}-\left(p \mu_{1}+(1-p) \mu_{2}\right)^{2}$.
7. Chapter 7, problem 61:

$$
\begin{aligned}
E\left(X^{2}\right) & =\frac{1}{3}\left(E\left(X^{2} \mid Y=1\right)+E\left(X^{2} \mid Y=2\right)+E\left(X^{2} \mid Y=3\right)\right) \\
& =\frac{1}{3}\left(9+E\left((5+X)^{2}\right)+E\left((7+X)^{2}\right)\right) \\
& =\frac{1}{3}\left(83+24 E(X)+2 E\left(X^{2}\right)\right) \\
& =\frac{1}{3}\left(443+2 E\left(X^{2}\right)\right) \text { since } E(X)=15
\end{aligned}
$$

Hence $E\left(X^{2}\right)=443$ and $\operatorname{Var}(X)=443-(15)^{2}=218$.
8. Chapter 7, theoretical exercise 19:

$$
\begin{aligned}
\operatorname{Cov}(X+Y, X-Y) & =\operatorname{Cov}(X, X)+\operatorname{Cov}(X,-Y)+\operatorname{Cov}(Y, X)+\operatorname{Cov}(Y,-Y) \\
& =\operatorname{Var}(X)-\operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, X)-\operatorname{Var}(Y) \\
& =\operatorname{Var}(X)-\operatorname{Var}(Y)=0
\end{aligned}
$$

9. Chapter 7, theoretical exercise 22: $\operatorname{Cov}(X, Y)=b \operatorname{Cov}(X, X)=b \operatorname{Var}(X)$ and $\operatorname{Var}(Y)=b^{2} \operatorname{Cov}(X, X)=b^{2} \operatorname{Var}(X)$, and so

$$
\rho_{X, Y}=\frac{b \operatorname{Var}(X)}{\sqrt{b^{2}} \operatorname{Var}(X)}=\frac{b}{|b|} .
$$

10. Chapter 7, theoretical exercise 35 :
(a) Let Y equal 1 or 0 according to whether or not $X<a$. Then

$$
\begin{aligned}
E(X) & =E(X \mid Y=1) P(Y=1)+E(X \mid Y=0) P(Y=0) \\
& =E(X \mid X<a) P(X<a)+E(X \mid X \geq a) P(X \geq a)
\end{aligned}
$$

(b)

$$
\begin{aligned}
E(X) & =E(X \mid X<a) P(X<a)+E(X \mid X \geq a) P(X \geq a) \\
& \geq E(X \mid X \geq a) P(X \geq a) \\
& \geq E(a \mid X \geq a) P(X \geq a) \\
& =a P(X \geq a)
\end{aligned}
$$

where the first inequality follows from the fact that $E(X \mid X<$ $a) \geq 0$ (which in turn follows from the fact that $P(X \geq 0)=1$).

