Math 431, Assignment \#10: Solutions

(due 5/3/01)

1. Chapter 6, problem 34: Let X and Y denote, respectively, the number of males and females in the sample that never eat breakfast. Since

$$
\begin{gathered}
E(X)=200 \times .252=50.4 \\
\operatorname{Var}(X)=200 \times .252 \times(1-.252)=37.6992 \\
E(Y)=200 \times .236=47.2 \\
\operatorname{Var}(Y)=200 \times .236 \times(1-.236)=36.0608
\end{gathered}
$$

it follows from the normal approximation to the binomial that X is approximately distributed as a normal random variable with mean 50.4 and variance 37.6992 , and that Y is approximately distributed as a normal random variable with mean 47.2 and variance 36.0608 . By Proposition 3.2, $X+Y$ is approximately distributed as a normal random variable with mean 97.6 and variance 73.7600 and $Y-X$ is approximately distributed as a normal random variable with mean -3.2 and variance 73.7600 . Let Z be a standard normal random variable.
(a)

$$
\begin{aligned}
P(X+Y \geq 110) & =P(X+Y \geq 109.5) \\
& =P\left(\frac{X+Y-97.6}{\sqrt{73.76}} \geq \frac{109.5-97.6}{\sqrt{73.76}}\right) \\
& =P(Z>1.3856) \approx .083
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(Y \geq X) & =P(Y-X \geq-.5) \\
& =P\left(\frac{Y-X-(-3.2)}{\sqrt{73.76}} \geq \frac{-.5-(-3.2)}{\sqrt{73.76}}\right) \\
& =P(Z>.3144) \approx .377 .
\end{aligned}
$$

2. Chapter 6, problem 42:
(a)

$$
\begin{gathered}
f_{X \mid Y}(x \mid y)=\frac{x e^{-x(y+1)}}{\int x e^{-x(y+1)} d x}=(y+1)^{2} x e^{-x(y+1)} \text { for } x>0 ; \\
f_{Y \mid X}(y \mid x)=\frac{x e^{-x(y+1)}}{\int x e^{-x(y+1)} d y}=x e^{-x y} \text { for } y>0 .
\end{gathered}
$$

(b)

$$
\begin{aligned}
P(X Y<a) & =\int_{0}^{\infty} \int_{0}^{a / x} x e^{-x(y+1)} d y d x \\
& =\int_{0}^{\infty}\left(1-e^{-a}\right) e^{-x} d x \\
& =1-e^{-a}
\end{aligned}
$$

so $f_{X Y}(a)=e^{-a}$ for $0<a$. That is, $X Y$ is an exponential r.v. of rate 1 .
3. Chapter 6, problem 48: Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be the 5 numbers chosen. With probability 1 , they are all distinct. There are 5 equally likely possibilities for which of them is the largest, then 4 remaining equally likely possibilities for which of them is the next largest, etc., for a total of $5 \times 4 \times 3 \times 2 \times 1=5!=120$ different situations, each of which has the same probability. In each of the 120 situations, the probability of having the median lie between $1 / 4$ and $3 / 4$ is the same as for each of the others. For simplicity, let's focus on the case in which $X_{1}<X_{2}<X_{3}<X_{4}<X_{5}$. The event $\left\{X_{1}<X_{2}<X_{3}<X_{4}<\right.$ X_{5} and $\left.1 / 4<X_{3}<3 / 4\right\}$ can be broken down into events of the form $\left\{X_{1}<X_{2}<X_{3}<X_{4}<X_{5}\right.$ and $\left.x<X_{3}<x+d x\right\}$ where x lies between $1 / 4$ and $3 / 4$, so its probability can be written as the integral

$$
\int_{1 / 4}^{3 / 4} P\left(X_{1}<X_{2}<x<X_{4}<X_{5} \text { and } x<X_{3}<x+d x\right)
$$

Since X_{1}, \ldots, X_{5} are independent,

$$
P\left(X_{1}<X_{2}<x<X_{4}<X_{5} \text { and } x<X_{3}<x+d x\right)
$$

splits up as the product

$$
P\left(X_{1}<X_{2}<x\right) P\left(x<X_{4}<X_{5}\right) P\left(x<X_{3}<x+d x\right)
$$

$P\left(X_{1}<X_{2}<x\right)=\int_{0}^{x} \int_{0}^{t} 1 d s d t=\int_{0}^{x} t d t=x^{2} / 2$. Likewise, $P(x<$ $\left.X_{4}<X_{5}\right)=(1-x)^{2} / 2$. Also, $P\left(x<X_{3}<x+d x\right)=d x$. So the integral is $\int_{1 / 4}^{3 / 4} \frac{x^{2}(1-x)^{2}}{4} d x$, and the desired probability is $120 \int_{1 / 4}^{3 / 4} \frac{x^{2}(1-x)^{2}}{4} d x$. (Section 6.6 contains a formula that gives you the equivalent answer $\frac{5}{2!2!} \int_{1 / 4}^{3 / 4} \frac{x^{2}(1-x)^{2}}{4} d x$.) The integral evaluates to approximately . 79297.
4. Chapter 6, theoretical exercise 18: For $a<s<1, P(U>s \mid U>a)=$ $P(U>s) / P(U>a)=\frac{1-s}{1-a}$, whence $U \mid U>a$ is uniform on $(a, 1)$. For $0<s<a, P(U<s \mid U<a)=P(U<s) / P(U<a)=\frac{s}{a}$, whence $U \mid U<a$ is uniform on $(0, a)$.
5. Chapter 7, problem 6 (also find the variance):

$$
\begin{gathered}
E\left(\sum_{i=1}^{10} X_{i}\right)=\sum_{i=1}^{10} E\left(X_{i}\right)=10(7 / 2)=35 \\
\operatorname{Var}\left(\sum_{i=1}^{10} X_{i}\right)=\sum_{i=1}^{10} \operatorname{Var}\left(X_{i}\right)=10(35 / 12)=175 / 6
\end{gathered}
$$

6. Chapter 7, problem 11 (also find the variance when $p=\frac{1}{2}$): For i between 2 and n, let X_{i} equal 1 if a changeover occurs on the i th flip and 0 otherwise. Then $E\left(X_{i}\right)=P(i-1$ is H, i is $T)+P(i-1$ is T, i is $H)=$ $2 p(1-p)$. Hence the expected number of changeovers is $E\left(\sum_{i=2}^{n} X_{i}\right)=$ $\sum_{i=2}^{n} E\left(X_{i}\right)=2(n-1) p(1-p)$.

In general, the events X_{i} are not independent of each other. For instance, take $n=3$. The expected value of $X_{2} X_{3}$ is the probability that X_{2} and X_{3} both equal 1, which is $P(1$ is $H, 2$ is $T, 3$ is $H)+$ $P(1$ is $T, 2$ is $H, 3$ is $T)=p^{2}(1-p)+p(1-p)^{2}=p-p^{2}$, which in general is not equal to $E\left(X_{2}\right) E\left(X_{3}\right)=4 p^{2}(1-p)^{2}$.
However, when $p=\frac{1}{2}$, the probability of a changeover occurring at any stage is $\frac{1}{2}$ independently of everything that's happened before, up to and including the preceding toss. So in this case the X_{i} 's are indeed independent. Each X_{i} has variance $1 / 4$, and $\operatorname{Var}\left(\sum_{i=2}^{n} X_{i}\right)=$ $\sum_{i=2}^{n} \operatorname{Var}\left(X_{i}\right)=(n-1) / 4$.
7. Chapter 7 , problem 15 (also find the variance): Let X_{i} denote the number of white balls taken from urn i, and X the total number of white balls taken. Then $E(X)=\sum E\left(X_{i}\right)=\frac{1}{6}+\frac{3}{6}+\frac{6}{10}+\frac{2}{8}+\frac{3}{10}=109 / 60$. Also, the X_{i} 's are independent of each other, so $\operatorname{Var}(X)=\sum \operatorname{Var}\left(X_{i}\right)=$ $\frac{1}{6}\left(1-\frac{1}{6}\right)+\frac{3}{6}\left(1-\frac{3}{6}\right)+\frac{6}{10}\left(1-\frac{6}{10}\right)+\frac{2}{8}\left(1-\frac{2}{8}\right)+\frac{3}{10}\left(1-\frac{3}{10}\right)=739 / 720$.
8. Chapter 7, problem 16:

$$
E(X)=\int_{y>x} y \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y=e^{-x^{2} / 2} / \sqrt{2 \pi} .
$$

9. Chapter 7, problem 22 (also find the variance): For $i=1$ to 6 , let X_{i} denote the number of rolls after we've seen $i-1$ distinct numbers until we've seen i distinct numbers. The X_{i} 's are independent geometric random variables with probability of success $p_{i}=(7-i) / 6$, expected value $E\left(X_{i}\right)=1 / p_{i}=6 /(7-i)$, and variance $\operatorname{Var}\left(X_{i}\right)=\left(1-p_{i}\right) / p_{i}^{2}=$ $6(i-1) /(7-i)^{2}$. Hence $E\left(\sum X_{i}\right)=\sum E\left(X_{i}\right)=6 / 6+6 / 5+6 / 4+6 / 3+$ $6 / 2+6 / 1=14.7$ and $\operatorname{Var}\left(\sum X_{i}\right)=\sum \operatorname{Var}\left(X_{i}\right)=0 / 6^{2}+6 / 5^{2}+12 / 4^{2}+$ $18 / 3^{2}+24 / 2^{2}+30 / 1^{2}=23.99$.
10. Chapter 7, problem 25: $P(N \geq n)=P\left(X_{1} \geq X_{2} \geq \cdots \geq X_{n}\right)=1 / n$! so $E(N)=\sum_{n=1}^{\infty} P(N \geq n)=\sum_{n=1}^{\infty} 1 / n!=e$.
