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Abstract: Rotor-routing is a procedure for routing tokens through a net-
work that can implement certain kinds of computation. These computations
are inherently asynchronous (the order in which tokens are routed makes no
difference) and distributed (information is spread throughout the system). It
is also possible to efficiently check that a computation has been carried out
correctly in less time than the computation itself required, provided one has
a certificate that can itself be computed by the rotor-router network. Rotor-
router networks can be viewed as both discrete analogues of continuous linear
systems and deterministic analogues of stochastic processes.

Rotor-router networks are discrete analogues of continuous
linear systems such as electrical circuits; they are also determin-
istic analogues of stochastic systems such as random walk pro-
cesses. These analogies permit one to design rotor-router net-
works to compute numerical quantities associated with some lin-
ear and/or stochastic systems. These distributed computations
can behave stably even in the presence of significant disruption.

1 Introduction

Rotor-routing is a protocol for routing tokens through a network, where a
network is represented as a directed graph consisting of vertices and arcs.
In the simplest case, where a vertex v has two outgoing arcs a1 and a2, the
rotor-routing protocol dictates that a token that leaves v should leave along
arc a1 if the preceding token that left v (which might be the same token at an
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earlier time or might not) went along arc a2, and vice versa. (See section 2
for a discussion of n-state rotor-routers for general values of n.) The “input”
to the computation is the choice of rotors and the pattern of interconnection
between them; the output is a quantity associated with the evolution of the
network that can be measured by an observer watching the system or stored
in an output register by the network itself.

Rotor-router networks are more like classical analog computers than like
modern digital computers. “Programming” an analog computer means con-
necting the components, and the “output” is the behavior of the system,
which one can measure in different numerical ways. Classical analogue com-
puting is possible because different physical systems can obey the same math-
ematical evolution laws; if one can devise an electrical circuit to satisfy the
mathematical evolution laws one wishes to study, the behavior of the electri-
cal circuit will faithfully mimic the behavior of the actual system one wishes
to study (a neuron, perhaps). We show here that suitably constructed rotor-
router networks display similar fidelity to two sorts of (very simple) systems:
discrete random network flows, discussed in section 2.2, and continuous de-
terministic network flows, discussed in section 2.3.

Classical analogue computing is successful within its domain of applicabil-
ity because (a) the wealth of available components permits one to embody a
wide variety of evolution laws, (b) a single constructed circuit can be driven
in many ways, and (c) a circuit being driven in a particular way can be
measured in a wide variety of ways; (b) and (c) taken together offer the ex-
perimenter a very rich picture of response characteristics of the system. For
discrete deterministic network flow models (such as rotor-routing or, more
generally, abelian distributed processes, as described in Dhar (1999)), we
have only a limited stockpile of components, and it is unclear what class
of models they can simulate. (For instance, we do not know how to use
models of this kind to simulate linear systems with impedance as well as
resistance.) The rotor-router systems described in this article also admit no
driving terms or other form of “input”, other than the choice of how many
tokens to feed into the network (which determines the fidelity of the simu-
lation: the more tokens one feeds into the system, the higher its fidelity to
the system being simulated). As a small consolation, one can take different
sorts of measurements of a single rotor-router network to determine different
numerical characteristics of the model it is simulating (e.g., the respective
current flow along different edges in a circuit of resistors). But, as one early
reader of this article wondered, if all that rotor-router networks can do is
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simulate simple systems like networks of resistors (or more generally solve
Dirichlet problems on graphs), of what use are they?

Our answer is that, although the computational powers of the networks
described here are rather weak, they can be viewed as prototypes of a style
of computation that might, with a suitably enlarged toolkit, lead to more
interesting applications.

Specifically, within their (currently very narrow) domain of applicability,
networks that implement rotor-routing can carry out parallel computations
with four noteworthy features (the first two holding generally, and the last
two holding under certain circumstances):

• Asynchronous: the order in which steps occur does not affect the out-
come of the computation.

• Distributed: information is stored throughout the network.

• Robust: even if errors occur (e.g., some tokens are routed along the
wrong arc), the outcome of the computation will not be greatly affected.
More specifically, the error in the answer grows merely linearly in the
error rate.

• Verifiable: each computation can be used to create a certificate that
can later be used to verify the outcome of the computation in less time
than the computation itself required. This is a consequence of the fact
that the evolution of the system satisfies a least action principle.

One reason for the tractable nature of rotor-router systems is that, al-
though a rotor-router system is nonlinear, it can be viewed as an approxi-
mation to a continuous linear model. This linear model in turn can be con-
strued as the average-case behavior of a discrete random network-propagation
model. This is not coincidental, as rotor-routing was invented circa 2000 by
this author as a way of derandomizing such random systems while retaining
their average-case behavior. A key technical tool in the analysis of rotor-
router systems is the existence of dynamical invariants obtained by simply
adding together many locally-defined quantities; in particular, these invari-
ants are used to prove the robustness property stated above, and indeed to
prove that the long-term behavior of a rotor-router system mimics the be-
havior of both discrete stochastic network flow and continuous deterministic
network flow.

3



In

Out2 Out1 Out1 Out1 Out1

. . .
000

1 1 1 1

0

Figure 1: A binary counter made of rotor-routers.

2 Three network flow models

2.1 Rotor-routing

An n-state rotor-router at a vertex v has n states (numbered 1 through n)
and its ith state is associated with an arc ai pointing from v to a neighboring
vertex. We denote the arc from v to w by (v, w). When v receives a token
(which we will hereafter call a “chip” for historical reasons) the state of
the rotor at v is incremented by 1 (unless the state was n, in which case
it becomes 1), and the chip is sent along the arc associated with the new
state of the rotor. That is, if v receives a chip when its rotor is in state i,
the rotor advances to state i + 1 and sends the chip along arc ai+1 (where
n + 1 is taken to be 1). It is permitted to have ai = aj with i 6= j. We let
p(v, w) = #{1 ≤ i ≤ n : ai = (v, w)}/n, i.e., the proportion of rotor-states
at v pointing to w, so that

∑

w p(v, w) = 1 for all v.
Figure 1 shows a binary counter (aka unary-to-binary converter) consist-

ing of a chain of m rotor-routers. It should be viewed as an open system that
can be connected to other rotor-router systems to form a larger network, with
chips being fed into it along an input line and exiting from it along two out-
put lines. Each rotor-router in the chain except the ones at the ends receives
chips from the rotor-router to its right and sends chips to the rotor-router to
its left and to the first output line. The rotor-router at the far right receives
chips only from the input line, and the rotor-router at the far left sends chips
to both the first and second output lines. For this particular network, it is
more convenient to number the states 0 and 1. When a rotor-router in state
0 receives a chip, it changes its state to 1 and sends the chip along the first
output line; when a rotor-router in state 1 receives a chip, it changes its state
to 0 and sends the chip to the next rotor-router to its left. If all rotors were
initially in state 0, then after N < 2m chips have passed through the binary
counter, the states of the rotors, read from left to right, will be the base
two representation of the integer N . When the 2mth chip is added, it will
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Figure 2: An electrical network simulator made of rotor-routers.

cause all the rotors to return to state 0 and send the chip along the second
output line, indicating that an overflow has occurred. Inasmuch as two-state
rotor-routers are little more than flip-flops, it is not surprising that they can
be used in this way to carry out binary addition. (The network of Figure 1
only implements addition of 1, but with more input lines it can do addition
of m-bit binary numbers.)

Figure 2 shows a seemingly very different way of using rotor-routers as
computational elements. The network here is computing the effective con-
ductance of the 3-by-3 square grid of unit resistors shown in Figure 3, as
measured between corners a and b. The reader should imagine that the out-
going arcs from each of the eight vertices are numbered counterclockwise 1
through n, where n is the number of outgoing arcs from the vertex. These
labels have been omitted from Figure 2; for our purposes, what matters is
the cyclic ordering of the arcs, not their precise numbering. (Indeed, there is
nothing particularly special about the counterclockwise ordering of the arcs
emanating from a vertex; the results of this paper remain qualitatively true
for arbitrary orderings, though the quantitative results depend on which or-
dering is chosen.) After N chips have entered the network through the input
line and exited through one of the two output lines, the number that left
through the second output line, times two, divided by the total number of
chips that have gone through the network, is approximately equal to the
effective conductance of the network, and the discrepancy between the two
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Figure 3: The electrical network being simulated in Figure 2. Nodes a and b
correspond to lines Out1 and Out2, respectively.

quantities goes to zero at rate constant/N as N gets large. (This will be ex-
plained and generalized in subsection 3.2.) One can view the chips entering
the network along the input line as constituting a unary representation of
the desired accuracy of the simulation.

2.2 Random routing

It is instructive to consider a variant of rotor-routing in which each suc-
cessive chip is routed along a random arc (rather than the next arc in the
pre-specified rotation sequence). Then each chip is simply executing a ran-
dom walk, where the probability that a walker at v will take a step to w is
p(v, w). As is well known (Doyle and Snell, 1984; Lyons and Peres, 2010),
there is an intimate connection between random walks on finite (undirected)
graphs and electrical networks. Indeed, the effective conductance Ceff of
a resistive network as measured between two vertices a and b satisfies the
formula Ceff/ca = pesc where the local conductance ca is the sum of the con-
ductances of the edges joining a to the rest of the network and the escape
probability pesc is the probability that a random walker starting from a will
reach b before returning to a. So, if one lets N walkers walk randomly in the
graph shown in Figure 2 (or, equivalently, if one routes N chips through the
directed graph shown in Figure 3 using random routing), and if one removes
the walkers when they arrive at a or b, then the number of walkers that exit
at b, times two, divided by N , will converge to the effective conductance of
the electrical network between a and b. However, the discrepancy will be on
the order of constant/

√
N . Rotor-routing brings the order of the discrepancy

down to constant/N .

6



2.3 Divisible routing

Yet another variant of rotor-routing that is worth considering is divisible

routing. In this scenario, chips may be subdivided, and our rule is that when
a chip of any size is received at an n-state vertex, it is split into n smaller
equal-sized chips. It is helpful here to change one’s language and speak of
fluid flowing through the system, where the fluid at a vertex gets divided
equally among the outgoing arcs. Both random routing and rotor-routing
are discrete approximations to the continuous divisible routing model. This
model is linear, and one reason for the tractability of both the random routing
and rotor-rounding models is that they can be seen as variations of the linear
model. (In fact, the amount of fluid that leaves the network at b in the
divisible-routing case is exactly equal to the expected number of chips that
leave the network at b in the random routing case.)

It is fairly obvious that for the random routing model, instead of imag-
ining the chips as passing through the system sequentially we could imagine
them as passing through the system simultaneously; as long as they do not
interact, and they individually behave randomly, the (random) number of
them that exit the network at one vertex versus another should follow the
same probability law as in the sequential case. It is less obvious, but nonethe-
less true (and not too hard to prove; see Holroyd et al., 2008), that a similar
property holds for rotor-routing; this is called the abelian property of rotor-
routing. Specifically, imagine that we have a number of indistinguishable
chips located at the vertices of a rotor-router network. To avoid degeneracy,
suppose that the network is connected, and that for each vertex v there is a
path of vertices v0, v1, v2, . . . , vm such that v0 = v, for all i < m there is a
rotor-state at vi that points to vi+1, and vm has a state that causes a chip to
leave the network. Then for any asynchronous routing of the chips, all the
chips must eventually exit the network along an output line, and the number
of chips that exit along any particular outline line is independent of the order
in which routing-moves occur.

Here our notion of asynchronous routing is that at each instant, at most
one chip makes a move, and it does so by advancing the state of the rotor
at the site it currently occupies and then moving to the site that the new
rotor-state points to.

If one wants to permit several chips to move at the same time, the model
can accommodate this, provided one makes sure that this does not cause
a “jam” but rather causes two colliding chips that want to arrive at v si-
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multaneously to form a queue. Note that since the chips are assumed to be
indistinguishable, forming such a queue does not require making a random
choice or breaking the symmetry of the system in any way.

Note also that there is no difference between, on the one hand, sending
N indistinguishable chips into the network along the input line and seeing
which output lines they take, and, on the other hand, sending a single chip
through the network N times and seeing which output lines it takes, where
it is returned to the network along the input line each time it exits along an
output line. In both situations, the only quantity that we attend to is the
number of times each respective output line is used; these counts must add
up to N , and the abelian property assures us that the count associated with
a particular output line is the same under the two scenarios.

3 Simulation with rotor-routers

3.1 A general theorem for resistive networks

Suppose we have a finite network of resistors such that the conductance cv,w

between any two nodes v, w ∈ V is a rational number. Let Ceff denote
the effective conductance of this network as measured between chosen nodes
a and b (this is the amount of current that would flow from a to b if we
attached these two nodes to a 1-volt battery, clamping the voltage at a at 0
and the voltage at b at 1). As a technicality, we need to modify the graph by
introducing two copies of the vertex a, which we will call a and a′. (Looking
ahead to the random walk and rotor walk models, chips enter the network
at a and exit from a′ or b; it is necessary to distinguish between a and a′

since a walker that is at a for the first time can continue walking within
the network but a walker that is at a for the second time must immediately
exit.) We define the local conductance at v as cv =

∑

w cv,w, the sum of the
conductances of the edges incident with v. Consider a rotor-router network
with two vertices a, a′ corresponding to the node a of the original network
and with a single vertex corresponding to every other node of the network
(including b), such that for all v 6= a′ and w 6= a, p(v, w) (the proportion of
the rotor-states at v that point to w) is equal to the normalized conductance
cv,w/cv. We have a first output line from a′ and a second output line from
b. After N chips have entered and left the network, the number that left
through b, times ca, divided by the total number of chips that have gone
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through the network, is approximately equal to the effective conductance of
the network, and the discrepancy between the two quantities is bounded by
an explicit (network-dependent) constant times 1/N for all N .

The proof does not appear in the literature, but it is easily obtained by
combining results in Doyle and Snell (1984) with results in Holroyd and Propp
(2010). The former provides the link between (purely resistive) electrical
networks and random walks, and the latter provides the link between random
walks and rotor walks.

Note that since vertices a′ and b each have only a single outward arc,
these vertices are dispensable; we can replace every arc to a′ by an arc that
goes directly to the first output line and every arc to b by an arc that goes
directly to the second output line. This is how the rotor-router network
shown in Figure 2 was derived from the resistor network shown in Figure 3.
Lines In, Out1, and Out2 correspond to vertices a, a′, and b respectively.

3.2 Dynamical invariants

A key tool in the proofs given by Holroyd and Propp (2010) is the existence of
simple numerical dynamical invariants of rotor-routing. These invariants are
associated with the states of the rotors and the locations of chips currently
in the network. A chips-and-rotors configuration consists of an arrangement
of chips on the vertices as well as some configuration of the rotors (i.e. some
assignment of states to the respective rotors). Since chips are indistinguish-
able, the arrangement of chips is given by a non-negative function on the
vertex set of the graph that indicates the number of chips present at each
vertex. The value of a chips-and-rotors configuration is equal to the sum of
the values of all the chips and the values of all the rotors, where the value of
a chip depends only on its location and the value of a rotor depends only on
its state. If we have chosen our value-function with care, then the operation
of changing the state of a rotor and the operation of moving a chip in accor-
dance with the new state of the rotor perfectly offset one another, resulting
in no net change in the value of the configuration.

Such numerical invariants exist for both the network shown in Figure 1
and the network shown in Figure 2, and indeed serve as a unifying link
between the two sorts of networks, so we will discuss the two examples in
turn before turning to the more general situation.

For the example shown in Figure 1, label the sites as 0, 1, 2, etc. from right
to left. A chip at vertex i has value 2i, and the rotor at vertex i has value 2i
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Figure 4: The values of vertices and arcs for Figure 1.

when it points towards the first output line and value 0 otherwise (i.e. when
it points toward the left or, in the case of the leftmost vertex, when it points
to the second output line). It is easy to check that as a chip moves through
the network, changing rotor-states as it goes, each operation of advancing the
rotor at i and moving a chip away from i along an outgoing arc has no net
effect on the value of the chips-and-rotors configuration (except when the chip
leaves the leftmost vertex along the second output line). Thus, if the system
has no chips at the vertices, the operation of adding a chip along the input
line and letting it propagate until it leaves the system usually increases the
value of the rotors by 1, since adding the chip at the right increases the value
of the chips-and-rotors configuration by 1 and this value is unchanged as the
chip moves through the system and exits along the first output line. The
one exceptional case is when all rotors are in the state 1; in this (“overflow”)
case, adding a chip causes the rotors to revert to the all-0’s state, so the
value of the system decreases by 2m − 1, where m is the number of rotors
in the chain. See Figure 4. In this Figure, we have given the output lines
respective values 0 and 2m, since with these values the dynamical invariance
property holds even when overflow occurs. When a chip enters the network
and exits along the first output line, the value of the rotors increases by 1;
when a chip enters the network and exits along the second output line, the
value of the rotors decreases by 2m − 1.

For the example shown in Figure 2, the value of a chip at a vertex v
is defined as the electrical potential of v if in the corresponding electrical
network we clamp vertex a′ at voltage 0 and clamp vertex b at voltage 1.
This electrical potential can also be interpreted as the probability that a
random walker starting from v will arrive at b before reaching a′. Figure 5
shows a way of assigning values to the rotor-states so that the value of a
chips-and-rotors configuration is invariant under the combined operation of
updating the rotor at v (rotating it counterclockwise to the next outgoing
arc) and sending a chip from v to the neighbor that the rotor at v now
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Figure 5: The values of vertices and arcs for Figure 2.

points to. Here we give the first output line the value 0 and the second
output line the value 1, corresponding to the respective voltages at a and b
in the original circuit, and corresponding to the respective probabilities that
a random walker who starts at a′ or b will leave the network at b. Note that
the value of a is .4. When a chip enters the network and exits along the first
output line, the value of the rotors increases by .4 − 0 = .4 (the value of the
input output line minus the value of the first output line); when a chip enters
the network and exits along the second output line, the value of the rotors
increases by .4− 1 = −.6 (the value of the input output line minus the value
of the second output line), i.e. decreases by .6.

The situation for more general finite electrical networks is similar. As
in the specific example discussed above, the value of a chip at a vertex v
is defined as the electrical potential of v if in the corresponding electrical
network we clamp vertex a′ at voltage 0 and clamp vertex b at voltage 1.
This is forced upon us by the abelian property: Suppose that v is neither
a′ nor b, and that we have an n-state rotor at v. If we put n chips at v,
then one possible way to evolve the system is to have each of the n chips
take a single step, causing the rotor at v to undergo one full revolution.
Since the rotor configuration is now exactly what it was before any of the
n chips moved, we see that the total value of the n chips must be the same
before and after. That is, if we let h(·) denote the value of a chip at a
particular location, we must have nh(v) =

∑

w np(v, w)h(w), where np(v, w)
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is the number of rotor-states at v that point to w. That is, we must have
h(v) =

∑

w p(v, w)h(w) =
∑

w(cv,w/cv)h(w), i.e., cv h(v) =
∑

w cv,w h(w). But
Kirchhoff’s voltage law tells us that the voltage function has this property
(and indeed it is the only function with this property satisfying the boundary
conditions h(a′) = 0, h(b) = 1).

As for the rotor-states, there is a way to assign values to the states so
that the total value of a chip-and-rotors configuration is a dynamical invariant
(that is, it does not change as long as chips remain within the network). First
note that dynamical invariance holds if it holds “locally”, that is, if for all
v the value of a chip-and-rotor configuration does not change when a chip
moves from v to another vertex. So it suffices to focus on the vertices v
individually. If we have an n-state rotor at v, we can introduce n unknowns
for the values of the rotor-states. Dynamical invariance at v holds if the n
unknowns satisfy n linear equations, where the ith equation represents the
condition that the value of a chip at v plus the value of the ith rotor-state
at v does not change if the rotor at v is advanced from state i to state
i + 1 (where n + 1 is interpreted as 1) and the chip at v moves from v to
the neighbor of v associated with the i + 1st rotor-state. From the form
of the equations (each of which specifies the difference between two of the
unknowns), we see that the only problem that might arise is that the sum
of the equations might be inconsistent. However, if we add the n equations,
so that the values of the rotor-states drop out of the equation, we are left
with n h(v) =

∑

w n p(v, w) h(w), which we know is already satisfied by h(·).
Hence exists a one-parameter family of ways to assign values to the rotor-
states at v so that the operation of rotor-routing at v preserves the sum of
all chip-locations and the value of the rotor-state at v.

One natural way to standardize the assignment of values to rotor-states
is to require that at each vertex v, the state with smallest value has value
0. Alternatively we could require that for every v the average value of the
rotor-states at v is 0. We have adopted the former approach for our examples.

Since one vertex is clamped at value 0 and one vertex is clamped at value
1, every other vertex will have voltage between 0 and 1, so that every chip
has value between 0 and 1 regardless of its location. It can be shown that the
values of each rotor-state at v can be chosen to lie between 0 and nv/4 if the
rotor at v is an nv-state rotor. This implies that every rotor configuration in
the network has value between 0 and 1

4

∑

v nv.
Recall that pesc is the probability that a walker that enters the electrical

network at a and does random walk with transition probabilities p(v, w)
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reaches b before returning to a. When a chip enters the corresponding rotor
network at a (whose value is pesc) and exits along the first output line (whose
value is 0), the value of the rotors increases by pesc − 0 = pesc; when a
chip enters the network at a and exits along the second output line (whose
value is 1), the value of the rotors increases by pesc − 1 (i.e. decreases by
1 − pesc). Hence, if N chips go through the system, with N − K of them
going to the first output line and K of them going to the second output
line, the net change in the value of the rotors will be an increase of (N −
K)(pesc)+(K)(pesc−1) = N(pesc)−K. However, the total value of the rotors
remains in some bounded interval (the interval [0, 1.7] in the example shown
in Figures 2 and 5); suppose this interval has width c (where we showed
above that c ≤ 1

4

∑

v nv). Then |K −Npesc| ≤ c, so that |K/N − pesc| ≤ c/N .
This last inequality says that the number of chips that exited along the

first output line, divided by the total number of chips that have gone through
the system, differs from pesc by at most a constant divided by N .

If we wished, we could combine the examples shown in Figures 1 and 2 by
having two binary counters of the kind shown in Figure 1, one for each output
line of the network shown in Figure 2, serving as output registers. That is,
chips that left the electrical-network simulator could be passed on to one
binary counter or the other (according to whether they left through a′ or b)
before leaving the system entirely. Then, after N chips had been fed into the
compound system, the two binary counters would record the number of exits
along the respective output-lines, which as remarked above would yield an
approximation to the effective conductance of the electrical network. This
observation underlines the fact that the networks of Figures 1 and 2 are really
quite analogous: both are doing arithmetic internally, recording the system’s
current value as a sum of many values residing at different vertices.

Moreover, both networks can be construed as deterministic analogues
of random processes. We have already seen that the second network is an
analogue of random walk on the electrical circuit of Figure 3; likewise, the
first network is a derandomization of the random reset process in which a
counter (initially 0) either increases by 1 or is reset to 0 at each step, with
each possibility occurring with probability 1/2, except when the counter is
m − 1, in which case the counter can only be reset to 0 at the next step.

Alternatively, one can view the network of Figure 1 as a discrete analogue
of the continuous flow process that pushes one unit of fluid through an input
line and, at each junction, sends half of the remaining fluid to the output
line and the remaining half on to the next junction.
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Thus, a circuit that does binary counting (as “digital” a process as one
could imagine) can be seen as a deterministic analogue of a stochastic system
or as a discrete analogue of a continuous linear system.

3.3 An infinite one-dimensional Markov chain

An example of using rotor-routers to compute properties of an infinite Markov
chain is described in Kleber (2005). We imagine a bug doing random walk
on {−1, 0, 1, 2, 3, . . .} so that at each time step it has probability 1/2 of going
1 to the right and probability 1/2 of going 2 to the left, where −1 and 0
are absorbing states. Elementary random walk arguments tell us that the
probability of the bug ending up in {−1, 0} is 1, and that the probability of
the bug ending up at −1 is τ = (−1 +

√
5)/2. If we tried this experiment

with N bugs doing random walk, the expected number of bugs ending up at
−1 would be Nτ , with standard deviation O(

√
N). In contrast, suppose we

move chips through a rotor-router network in which each location i ≥ 1 has
a 2-state rotor, with one state that sends a chip to i + 1 and one state that
sends a chip to i − 2. Suppose moreover that the first time a chip leaves i it
is routed to i− 2. Then if we send N chips through this system, the number
KN that leave via −1 differs from Nτ by at most τ , for all N . That is, if
one momentarily ignores the fact that the system can be solved exactly and
tries to adopt a Monte Carlo approach to estimating the probability that the
bug arrives at −1 before it arrives at 0, standard Monte Carlo has typical
error O(1/

√
N) while derandomized Monte Carlo via rotor-routers has error

O(1/N).
(To convert the scenario of Kleber (2005) into the scenario of this article,

create an input line that goes to 1 and output lines that lead from −1 and
0.)

3.4 An infinite two-dimensional Markov chain

Another example of computing with rotor-routers is described in Holroyd
and Propp (2010). Here the Markov chain being derandomized has state-
space {(i, j) : i, j ∈ Z} and we imagine a bug doing random walk so that at
each time step it has probability 1/4 of going any of the four neighbors of
the current site, except that when the bug visits (1, 1), it goes back to (0, 0).
The rule regarding (1, 1) may seem a bit strange, but it was chosen to ensure
that the probability that a bug that starts at {(0, 0)} will eventually return
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to the set {(0, 0), (1, 1)} is 1 and that the probability of the bug ending up at
(1, 1) is π/8 (this is readily derived from the formula a(1, 1) = 4/π on page
149 of Spitzer, 1976). If we tried this experiment with N bugs doing random
walk, the expected number of bugs ending up at (1, 1) would be Nπ/8, with
standard deviation O(

√
N). On the other hand, if we move chips through a

rotor-router network in which each location (a, b) 6= (1, 1) has a 4-state rotor,
and if we send N chips through this system, the number KN that end up
at (1, 1) differs from Nπ/8 by O(log N). Indeed, the log N bound may be
unduly pessimistic: for all N up through 104 (the point up through which
simulations have been conducted), KN never differs from Nπ/8 by more than
2.1, and for more than half the values of N up through 104, KN differs from
Nπ/8 by less than 0.5 (that is, KN is actually the integer closest to Nπ/8).

4 Properties of rotor-routing

4.1 Asynchronousness

The propositions proved in Holroyd et al. (2008) establish an “abelian prop-
erty” for the rotor-router model: as long every chip that can be moved does
eventually get moved, the final disposition of the chips (that is, the tallies
of how many chips left the network along each arc) does not depend on the
order in which chips were moved.

4.2 Distributedness

If we adopt the sequential point of view and let a chip pass entirely through
the network before introducing a new chip (or equivalently re-introducing
the old chip) into the system, so that there is never more than one chip in
the system, then we can ask, what sort of “memory” does the system possess
that enables it to compute quantities like the effective conductance? As
we have seen, the random router model can be used to compute the effective
conductance of a network of resistors, albeit with error O(1/

√
N) rather than

O(1/N), so there is a sense in which the information in the network is stored
in the pattern of connections (since in the case of random routing, nothing
else is remembered by the system — of course there is also information in the
location of the chip, but the information content of the chip itself is merely
the logarithm of the number of vertices).
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On the other hand, rotor-routing does better than random routing, and
we might say that the relevant information is stored in the rotors. Indeed, we
can be more specific here, and say that the information is stored in the values
of the rotors, as defined above. Recall the reason for the effectiveness of rotor-
routing as a way of estimating escape probabilities: the number of escapes
during the first N rotor-walks, minus N times the escape probability, is
constrained to be equal to the difference between the final value of the rotors
and the initial value of the rotors, and this difference in turn is bounded in
absolute value by the difference between the maximum possible value of the
rotors and the minimum possible value of the rotors.

4.3 Robustness

For networks like the one shown in Figure 1, robustness does not apply, since
some of the rotor-states have much larger values than others; a mistake at a
rotor whose states have a wide range of values can have a great impact on
the final answer. (This is just a way of saying that a binary counter can be
very inaccurate if the high-order bits are changed.)

On the other hand, for networks like the one shown in Figure 2, each
vertex has potential between 0 and 1 and we may assume that the rotor at v
has states that all take values between 0 and nv/4, where the rotor at v is an
nv-state rotor. Suppose the network as a whole takes values lying between 0
and c. If a rotor were to advance to the wrong state, this would affect the
value of the system by only a small relative amount, specifically, at most d/4,
where d = maxv nv is the maximum number of outgoing arcs at any vertex.
Thus, in the notation of subsection 5.1, we would have |K−Npesc±d/4| ≤ c,
so that |K/N − pesc| ≤ c/N + d/4N . Likewise, if a site were to send a chip
to the wrong neighbor while advancing its rotor properly, we could treat
this mistake as if the rotor had advanced improperly twice (once before and
once after the incorrect routing), so by the same reasoning we can bound
the inaccuracy of our estimate of pesc by c/N + d/2N . If many errors occur,
say ǫN , with rotors advancing improperly an ǫ proportion of the time, the
discrepancy between Ceff and the rotor-router network’s approximation to
this quantity will be at most c/N + ǫd/2.

Additionally, suppose that at some moment (after a chip has left along an
output line and before it has returned to the network along an input line) we
were to reset all the rotors in the system. The chips-and-rotors value of the
system would be reset to some number between 0 and c, and the performance
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bound |K ′/N ′ − pesc| ≤ c/N ′ would apply, where N ′ is the number of chips
that exited the system after the reset and K ′ is the number of those chips
that exited along the first output line, implying |(K +K ′)/(N +N ′)−pesc| ≤
2c/(N + N ′). In this sense, over-writing the states of the rotors has only
a small impact on the fidelity of the system, as long as c is small. This is
further support for the contention that the system’s most important form of
memory is in the pattern of connections, and that the function of the rotors
is to enable the system to make optimum use of those connections to achieve
as high fidelity as possible.

4.4 Verifiability

The odometer function is defined as the integer-valued function of the vertex-
set that records for each v the number of times v sent a chip to a neighbor.
Levine noticed that the odometer functions satisfies a least action principle
that makes it fairly simple to check that a proposed odometer function is
valid, relative to a specified initial configuration of the rotors. (This extends
an observation of Moore and Machta (2000) in the context of the sandpile
model, discussed below in subsection 5.1, as well as Deepak Dhar’s observa-
tion that the sandpile model satisfies what he called the “lazy man’s least
action principle”.) The number of operations required to check a proposed
odometer function is on the order of the number of edges times the logarithm
of the maximum value of the odometer function.

Friedrich and Levine (2010) made use of the least action principle in
their study of two-dimensional rotor-router aggregation (discussed below in
subsection 5.3). In particular, their way of building the N -particle aggregate
appears to have running-time Θ(N log N) rather than Θ(N2) (the latter being
the amount of time required to carry out a straightforward simulation). This
has enabled them to construct the N -particle rotor-router aggregate for N =
1010, which would be far beyond the reach of a straightforward approach.
The pictures at http://rotor-router.mpi-inf.mpg.de/ show, for various
choices of the design-parameters and for various large values of N , what the
aggregate looks like if one starts with all rotors in the same state and adds
N particles to the blob.
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4.5 Self-organization

We will not dwell on the self-organized criticality feature of rotor-router sys-
tems, though it was an essential part of the vision that led Priezzhev, Dhar
et al. (1996) to introduce the Eulerian walkers model in the first place (see
subsection 5.1). However, we will remark that an important (though still
poorly understood) feature of the pictures at Friedrich’s website is that some
remarkably intricate and stable forms of order are brought into existence by
the rotor-router rule. Figure 6 shows another instance of this sort of self-
organization. Here the underlying graph is the subgraph of the square grid
Z × Z consisting of all vertices (i, j) with i2 + j2 ≤ (250)2 (a discrete disk)
along with all the neighbors of those vertices that do not belong to the disk
itself (a discrete corona); vertices in the corona correspond to output lines,
and there is an input line to (0, 0). This corresponds to an electrical network
in which the center of the disk is clamped to voltage 0 and vertices in the
corona are clamped to voltage 1. The rotors are initially all pointing in the
same direction. The Figure shows the state of the rotors after 1000 chips
have passed through the system, with the four colors corresponding to the
four states of the rotors.

5 Other models

5.1 Sandpile model aka chip-firing

The 2-state rotors we have discussed so far alternate between sending a chip
along one arc and sending a chip along the other. A different approach
to derandomization is the sandpile model, or chip-firing model, where the
processor at a vertex alternates between holding a chip at v and sending a
chip simultaneously to both neighbors of v. That is, if a vertex has no chips,
and a chip arrives, it must wait there until a second chip arrives, at which
moment the two chips can leave the vertex, with one chip leaving along each
of the two arcs. (Since the chips are indistinguishable, we need not to worry
about deciding which chip travels along which arc.) More generally, if a
vertex with n outgoing arcs is occupied by ≥ n chips, we may send 1 chip
along each arc, but we are not permitted to move any of the chips at v if
there are fewer than n of them.

Most of what has been said above about rotor-routing applies as well to
chip-firing (see Engel, 1975 and 1976), including the constant/N bound on
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Figure 6: Self-organization of rotor-routers in a disk.
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discrepancy, although the constant here tends to be larger. For a discussion
of relationships between chip-firing and rotor-routing, see Kleber (2005) and
Holroyd et al. (2008).

The sandpile model was invented by Bak, Tang, and Wiesenfeld (1987),
and most the early rigorous theoretical analysis of the model is due to Deepak
Dhar (see e.g., Dhar 1999). Dhar and collaborators also explored the rotor-
router model under the name of the “Eulerian walkers model” (Priezzhev et

al., 1996, Shcherbakov et al., 1996, and Povolotsky et al., 1998). Dhar (1999)
proposed that both the rotor-router model and sandpile model can be viewed
as special cases of a more general “abelian distributed processors model”.
This is related to the observation that networks of rotor-routers themselves
behave like rotor-routers. For instance, the binary counter of Figure 1 acts
like a 2m-state rotor, while the resistive network simulator of Figure 2 acts
like a 20-state rotor (this is the order of the element associated with the
vertex a in the sandpile group associated with the graph; see Holroyd et al.,
2008 for a discussion of the relation between rotor-routing and the sandpile
group). More generally, given any network of rotor-routers, if one looks at
a connected sub-network of rotors, one obtains a multi-input, multi-output
finite-state machine that has the abelian property: if one hooks such sub-
networks together and passes chips through the compound network, the order
in which the sub-networks process the chips passing through them does not
affect the final outcome.

5.2 Synchronous network flow

Cooper and Spencer (2006) studied rotor-routing in a slightly different set-
ting, where we have a (finite) number of chips initially placed in a graph and
we advance each of them t steps in tandem (every chip takes a first step, then
every chip takes a second step, etc., for t rounds). Note that when we move
chips in tandem in this way, the abelian property does not apply; for instance,
we cannot move one chip t steps, then move another chip t steps, etc., and
be assured of reaching the same final state. For a more detailed discussion
of this point, see Figure 8 of Holroyd et al. (2008) and the surrounding text.

Cooper and Spencer showed that when the graph is Zd, and the initial
distribution of chips is restricted to the set of vertices whose coordinates
have sum divisible by 2, then the discrepancy between the number of chips
at location v at time t under rotor-routing and the expected number of chips
that would be at v at time t under random routing is at most a constant
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that depends on d — not on v, t, the distribution of the chips at time 0,
or the initial configuration of the rotors. This result assumes that all rotors
turn counterclockwise (or equivalently, all rotors turn clockwise). Using a
different sort of 4-state rotor at each vertex merely changes the constant.
(Of course we are assuming that the four states of the rotor at v send a chip
to the four neighbors of v.) Similar results hold in higher-dimensional grids,
though the constants are bigger. For articles that pursue this further, see
Cooper et al. (2006), Cooper et al. (2007), and Doerr and Friedrich (2009).

5.3 Growth model

Imagine that the sites of Z2 start out being unoccupied, and that we use ran-
dom walk or rotor-walk to fill in the vicinity of (0, 0) with a growing “blob”.
Specifically, we release a particle from (0, 0) and let it walk until it hits a
site that is not yet part of the blob; then this site is added to the blob and
the particle is returned to (0, 0) to start its next walk. In the case where
the walk is a random walk, this is the Internal Diffusion-Limited Aggrega-
tion Model, invented independently by physicists (Meakin and Deutch, 1986)
and mathematicians (Diaconis and Fulton, 1991); results of Lawler, Bram-
son, and Griffeath (1992) show that with probability 1, the N -particle blob,

rescaled by
√

N/π, converges to a disk of radius 1. In the case where the walk
is a rotor-walk, with clockwise or counterclockwise progression of the rotors,
and with all rotors initially aligned with one another, this is the “rotor-router
blob” introduced by this author circa 2000 and analyzed by Levine and Peres
(2009). Whereas the N -particle IDLA blob appears to have radial deviations
from circularity on the order of log N , the deviations from circularity for the
N -particle rotor-router blob appear to be significantly smaller; see Friedrich
and Levine (2010). In particular, it is possible that the deviation, as mea-
sured by the difference between the circumradius and inradius of the blob,
remains bounded for all N . Here one should measure the circumradius and
inradius from (1/2, 1/2) rather than (0, 0), since there is both theoretical
and empirical evidence for the conjecture that the center of mass of the blob
approaches (1/2, 1/2).

In any case, it appears that, using completely local operations, the net-
work can “tell” which of two far-away points is closer to (1/2, 1/2) as long as
|r1 − r2| is not too small compared to r1 + r2, where r1 and r2 are the points’
actual distances from (1/2, 1/2). There is thus a sense in which rotor-router
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aggregation computes approximate circles. However, it should be mentioned
that this computation is not as robust as the rotor-router approach to esti-
mating escape probabilities and effective conductances. For instance, simply
by changing the behavior of the rotors on the coordinate axes, one can dra-
matically change the shape of the blob; see Kager and Levine (2010).

It has also been shown that rotor-routers provide a good approximation
not just to internal DLA with a single point-source but also to more gen-
eral forms of internal DLA, describable as PDE free-boundary problems; see
Levine and Peres (2007).

6 Conclusions

Although we have focused above on computing effective conductances, rotor-
routing networks also measure voltages and currents. For instance, to mea-
sure the current flow in a resistive circuit between two neighboring nodes
v and w, we need only look at the net flow of chips from v to w (that is,
the flow of chips from v to w minus the flow of chips from w to v) in the
associated rotor-router network, divided by the number of chips that have
passed through the network.

The rotor-router model is nonlinear, but because it approximates the di-
visible flow model, it is in many respects exactly solvable. In particular,
there is an asymptotic sense in which, as the number of indivisible parti-
cles that flow through a network goes to infinity, the behavior of the system
approaches the behavior of the divisible model. The same is true for the
random-router model, but the discrepancies go to zero more slowly. Fur-
thermore, the performance guarantees for rotor-routing are deterministic,
whereas the performance guarantees for random routing are random (there
is a small but non-zero probability that the discrepancy will be much larger
than the O(1/

√
n) average-case bound).

A key property of the rotor-router model is the existence of conserved bulk
quantities expressible as sums of locally-defined quantities. In the examples
we have studied here, there is essentially only one such quantity (the value of
the chips-and-rotors configuration), but the space of such invariants can be
higher-dimensional. Specifically, if one is solving a Dirichlet problem where
the value of a function is constrained at m points (as in the case of the system
shown in Figure 6), the space of linear dynamical invariants is m-dimensional.

On the other hand, the usual concept of dynamics-in-time is in a sense
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inappropriate for this kind of system (leaving aside the Cooper-Spencer sort
of scenario), since, when there are multiple chips in the system, it is not
meaningful to ask which chip should take a step next; the number of chips
that exit the network along a particular output line is independent of the
order in which steps are taken, and indeed there can be two events in the
network for which it does not make sense to ask which one occurs first, since
the time-order of the events depends on the choice of dynamical path. Our
notion of dynamics should be flexible enough to accommodate this symmetry.
Note that in some applications one can choose which event will occur next
according to some probability distribution, and then the system becomes a
Markov chain with stochastic dynamics in ordinary time, but imposing such
a probability law is extrinsic to the system as we have described it above.
Rather, for systems like rotor-routing, the dynamics is expressed not in a
function (given the current state of the system, here is what the next state
of the system must be) but in a relation (given the current state of the
system, here is what the next state of the system can be).

Another noteworthy feature of rotor-routing is the way networks store
information. In one sense, the information resides in the pattern of con-
nections; in another sense, information resides in the rotor-states, and more
specifically, in the numerical values of those states.

A consequence of the distributed way in which these networks store infor-
mation is their robustness in the presence of errors. Rotor-router computa-
tions are not always robust (the binary counter is not robust under changes
to its most significant bits, and rotor-router aggregation has its own sort of
sensitivity to small perturbations; see Kager and Levine, 2010). But when
the values of the rotor-states are all significantly smaller than the values on
the network’s output lines, a small number of errors will not have a large
effect on the accuracy of the computation. Part of the reason for this is that
the computation is intrinsic to the network’s connectivity pattern (as the
behavior of random routing shows); but the use of rotor-routing instead of
random routing reduces these errors even more.

Rotor-router computations have the feature that, if you can correctly
guess the number of times each vertex emits a chip, you can rigorously prove
that your guess is correct with much less work than is required to derive the
number of times each vertex emits a chip by simulating the system.

Lastly, rotor-router computation serves as an example of digital analogue

computation (using here the root meaning of the term “analogue”). The con-
cept of analogy is more crucial to the study of computation than distinctions
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like discrete-versus-continuous or even deterministic-versus-random. Indeed,
as the three network routing models of section 2 demonstrate, a discrete
model can be an analogue of a continuous model, and a deterministic model
can be an analogue of a stochastic model.

Thanks to Deepak Dhar, Tobias Friedrich, Lionel Levine, Cris
Moore, and an anonymous referee for their help during the writing
of this article.
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