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For more details, see:
http://www.math.wisc.edu/∼propp/
hidden/rotor

(a memo I wrote in 2002) and
arxiv: math.CO/0409407

(“The Rotor-Router Model”, by Lionel
Levine); also try the applet
http://www.math.wisc.edu/∼propp/
rotor-router-1.0/

(written by Hal Canary and Francis Wong)
and the web-stuff at
http://www.paradise.caltech.edu/

∼cook/Warehouse/ForPropp/
(written by Matt Cook).
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Diffusion-limited aggregation

Diffusion-limited aggregation (DLA) is
a (probabilistic) growth process in R2.

For purposes of this talk, we will replace
it by a discrete analogue that creates a
sequence of finite subsets S1, S2, ... of
the lattice Zd.

Here S1 is the singleton consisting of the
origin 0, and for all n > 1, Sn is equal
to Sn−1 with a single lattice-point xn

adjoined, where xn is adjacent to some
element of Sn−1.

To choose xn, imagine a particle that
wanders in “from infinity”, and let xn

be the first site that the particle visits
that is adjacent to Sn−1.
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See “Diffusion-Limited Aggregation: A
Model for Pattern Formation”, http://
www.aip.org/pt/vol-53/iss-11/

p36.html (Physics Today On-Line).
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Internal DLA

Internal DLA is a variant of DLA in
which particles are added at the origin
rather than at infinity.

Unlike external DLA, which gives rise
to feathery dendritic shapes of a conjec-
turally fractal nature that have so far
mostly defied rigorous analysis, inter-
nal DLA is mathematically tractable:
Lawler, Bramson, and Griffeath (1992)
proved that the set Sn, rescaled by

√
n,

converges in probability to a disk.

See http://www.santafe.edu/
∼moore/pubs/dla.html for informa-
tion on efficient computation of IDLA.
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The Diaconis-Fulton model

Diaconis and Fulton (1991) define a way
to add two finite subsets of Zd (or any
infinite connected graph G).

If the sets S and T are disjoint, their
sum is just their union.

If the intersection of S and T consists
of a single point x, the sum of S and T
is S∪T together with a random point y
obtained by letting a particle execute a
random walk in G starting from x until
it first lands on a point y not in S ∪ T .
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More generally, if S and T overlap in a
set {x1, ..., xk}, the sum of S and T is a
random set of cardinality |S|+ |T |, con-
structed by letting k particles do ran-
dom walk starting from the respective
points x1, x2, ..., xk, terminating in dis-
tinct points

y1 6∈ S ∪ T,
y2 6∈ S ∪ T ∪ {y1},
y3 6∈ S ∪ T ∪ {y1, y2},
...
yk 6∈ S ∪ T ∪ {y1, y2, ..., yk−1}

and adjoining these k new points.
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This might not appear to be a well-
defined definition of addition, since one
might suppose that the probability law
governing the resulting set

S ∪ T ∪ {y1, ..., yk}
would depend on the choice of ordering
of the points xi in the intersection of S
and T .

However, it turns out that the ordering
of the xi’s does not matter.

A good way to see this is to use a “stacks”
picture.
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Associate a stack with each vertex v.

The stack at v consists of an infinite
sequences of vertices, each of which is a
random neighbor of v; all the elements
of all the stacks are independent of one
another.

Then, to do a random walk from a ver-
tex v, one pops the top element of the
stack of v (call it v’) and walks to v’,
then one pops the top element of that
stack (call it v”) and walks to v”, etc.,
until the stopping-condition is satisfied
(that is, the particle arrives at a vertex
that is not already occupied).
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Relative to the randomness embodied in
the entries of the stacks, the Diaconis-
Fulton operation is deterministic, and
one need only prove that the outcome
does not depend on the order in which
one resolves conflicts (i.e. situations in
which two particles start out attempt-
ing to occupy the same site).

Proving this claim can be reduced to the
simpler claim that (S + {x}) + {y} is
the same set as (S + {y}) + {x}.
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In the Diaconis-Fulton framework, in-
ternal DLA can be described very suc-
cinctly as the result of adding the sin-
gleton {0} to itself repeatedly.

(Diaconis-Fulton addition is really a way
of adding two probability distributions
on the collection of finite sets.)
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IDLA in 1 dimension

Say the current blob is [−x(t), y(t)] =
[−x, y].

The probability that the next particle
escapes at the left resp. right is y/(x+y)
resp. x/(x + y) (gambler’s ruin).

Continuum limit:

dx/dt = y/(x+ y), dy/dt = x/(x+ y)

dy/dx = x/y

y dy = x dx

y2 = x2 + C

x/y → 1
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Variant: Every time a particle escapes
to the left, put 1 particle in each of the
r sites immediately to the left of the
blob. Every time a particle escapes to
the right, put 1 particle in each of the
s sites immediately to the right of the
blob.

Continuum limit:

dx/dt = ry/(x+y), dy/dt = sx/(x+y)

dy/dx = sx/ry

ry dy = sx dx

ry2 = sx2 + C

x/y →
√
r/s

13



Quasirandom IDLA in 1 dimen-
sion

In each stack, we replace randomness
by low discrepancy.

Specifically, at each site, we alternate
between ejecting particles to the left and
ejecting particles to the right.

Let −xn and yn be the leftmost and
rightmost sites in the blob after n par-
ticles have been added.

Theorem (Levine): |xn
√

s − yn
√

r| is
bounded.
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Key ideas:

• model dynamics as iteration of a piece-
wise linear map;

• find quadratic invariants.

Specifically, the piecewise linear map

fr,s(x, y, z) =



(x− r, y, z − x + 1)
if x + y > z,

(x, y + s, z − y)
if x + y ≤ z

implements the operation of adding a
particle at 0 and letting it reach the
boundary of the blob, and the quadratic
quantity

sx2 − ry2 + (r − 2)sx + rsy − 2rsz

is invariant under fr,s.
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Quasirandom IDLA in 2 dimen-
sions

Recall:

Theorem (Bramson, Griffeath, and Lawler):
The n-particle IDLA blob in two dimen-
sions is round to within radial fluctua-
tion that are almost surely o(

√
n).

Theorem (Lawler): Can replace o(
√

n)

by O(n1/3).

Theorem (Blachère): Can replace O(n1/3)
by O(ln n).

(Simulations by Moore and Machta sug-
gest that this last result is best possi-
ble.)
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To quasirandomize, put a 4-valued rotor
at each site.

The rotor can point East, South, West,
or North.

When a particle arrives at an already-
occupied site, the rotor at the site ro-
tates, and the particle moves in the di-
rection of the new rotor-setting.

When a particle arrives at an unoccu-
pied site, it stays there, and a new par-
ticle gets added to the system at the
origin (and starts a walk of its own).

Each time a new particle gets added to
the blob, the rotor-settings form a span-
ning forest rooted at the boundary of
the blob.
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How round is the circle made by the
rotor-routers?

After a million particles have been added
to the system, the inradius is 563.5 and
the outradius is 565.1: they differ by 1.6
(about three tenths of one percent).

The difference between inradius and
circumradius seems to be bounded.

No one has proved that ratio between
inradius and circumradius is bounded.

Can Kleber’s approach to proving that
fluctuations are o(

√
n) (comparison with

IDLA) be made to work?

If not, can we derandomize the Lawler,
Bramson, and Griffeath argument?
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Observed features of quasiran-
dom aggregation in 2D

• Distribution of angles between suc-
cessive ejections is heavily biased to-
wards the left half of [0, 2π), with a
sharp peak at π/2.

•Monochromatic regions near the bound-
ary appear at locations (x, y) with
y/x close to a simple rational num-
ber.

•Monochromatic regions inside appear
at locations of the form (f (i), f(j))
where i, j are integers and f is a
simple conformal map of the plane
(Hoey).
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These structures offer some of the same
features as blobs created by chip-firing,
but are probably easier to understand.
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Digression: Other things to try

• Directed IDLA (NENENE...)

• Other rules, e.g. ENWENWENW...

• (DLA and Directed DLA)

It would also be natural to look at ag-
gregation on trees (cf. Aldous and Shields).

I have no idea how to quasirandomize
Rost’s growth model in a quadrant (which
yields a parabolic boundary) or the dis-
crete time version of Rost (which yields
a circular boundary), but I’d very much
like to; it might give a construction of
quasirandom tilings.
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Diaconis-Fulton in the continuum?

Conjecture: A continuum limit of Diaconis-
Fulton addition exists and is rotation-
ally invariant.

Simulation suggests that the continuum
limit of rotor-router version of Diaconis-
Fulton exists and is rotationally invari-
ant (experiments by self and by Matt
Cook).
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