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Abstract

Iterating Newton’s method symbolically for the general quadratic ax
2+bx+c yields a rational function

Pn(x)
Qn(x)

, the numerator and denominator of which are polynomials with highly composite coefficients. In

particular, the coefficients have no prime factors greater than 2n after n iterations even though most of

the coefficients are much larger than 2n.

1 Introduction

If f : C → C is a differentiable function, then Newton’s method, applied recursively to an initial value of z0,
yields the sequence of values z1, z2, . . . defined as

zn+1 = N(zn) = zn −
f(zn)

f ′(zn)
(1)

which, in many cases, converges to a root of f . We restrict our attention to the general quadratic f(x) =
ax2 + bx + c for the purposes of this paper. Instead of using equation (1) as a numerical method, we are
interested in iterating symbolically by letting the initial guess be z0 = x where x ∈ C. Doing so, we obtain

zn =
Pn(x)

Qn(x)

where Pn(x) and Qn(x) are relatively prime polynomials in C[x]. An interesting observation, pointed out
to us by Jim Propp, is that the coefficients of these polynomials, though very large, have no prime factors
≥ 2n. On his suggestion that this divisibility property might imply some combinatorial interpretation not
immediately apparent in the formulation of equation (1), we have derived an explicit symbolic formula for
each iterate.

The aim of this paper is to show that the polynomials Pn and Qn are given by the following explicit
formulas:

Pn(x) = a2n

−1x2n

−

2n

−2
∑

k=0

2n

−k−2
∑

j=0

(−1)j

(

2n

k

)(

2n − k − j − 2

j

)

ak+jb2n

−k−2j−2cj+1xk (2a)

Qn(x) =

2n

−1
∑

k=0

2n

−k−1
∑

j=0

(−1)j

(

2n

k

)(

2n − k − j − 1

j

)

ak+jb2n

−k−2j−1cjxk (2b)

The binomial coefficients immediately explain the maximum size of the prime divisors of the coefficients of
these polynomials. Furthermore, equation (2) provides a good starting point for investigating any combina-
torial meaning of Pn and Qn, which is discussed at the end of this paper.
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2 Fractional Linear Transformations

Let C∗ denote the Riemann sphere C ∪ {∞}. A fractional linear transformation is a map β : C∗ → C∗ of
the form

β(τ) =
aτ + b

cτ + d

where a, b, c, d ∈ C and ad − bc 6= 0. This function is a conformal map which is analytic everywhere except
the pole at τ = − d

c
. For our purposes, we define a particular fractional linear transformation ϕ(τ) as

ϕ(τ) =
τ − r1

τ − r2
(3)

where r1 and r2 are the two distinct roots of the quadratic polynomial f(x) = ax2 + bx + c. This particular
approach exploits the fact that Newton’s method for quadratics (with distinct roots) is conjugate to z → z2,
with respect to ϕ, the fractional linear transformation which sends the roots of the quadratic to 0 and
∞. Rick Kenyon [2] was the first to point this out to us; expositions can be found in both Cayley [1] and
McMullen [3]. For distinct roots r1 and r2, the fractional linear transformation ϕ−1(τ) exists and the formula
from equation (1) can be expressed as

N(zn) = zn −
az2

n + bzn + c

2azn + b
= ϕ−1(ϕ(zn)2)

That is, the following diagram of maps is commutative:

C
N

−−−−→ C

ϕ





y





y

ϕ

C∗ −−−−→
(·)2

C∗

Thus, the formula for the nth iterate of Newton’s method is

ϕ−1(ϕ(x)2
n

) =
r1(x − r2)

2n

− r2(x − r1)
2n

(x − r2)2
n − (x − r1)2

n
=

Pn(x)

Qn(x)
(4)

Using this formula, we shall prove the equations in (2).

3 Proof of Explicit Formula

Theorem 1. Given a quadratic polynomial f(x) = ax2 + bx + c, with b2 − 4ac 6= 0, define polynomials Pn

and Qn as follows.

Pn(x) =
a2n

−1

r1 − r2

(

r1 (x − r2)
2n

− r2 (x − r1)
2n

)

(5a)

Qn(x) =
a2n

−1

r1 − r2

(

(x − r2)
2n

− (x − r1)
2n

)

(5b)

Then the polynomials given in equation (5) are equal to those in equation (2) which are reproduced below.

Pn(x) = a2n

−1x2n

−

2n

−2
∑

k=0

2n

−k−2
∑

j=0

(−1)j

(

2n

k

)(

2n − k − j − 2

j

)

ak+jb2n

−k−2j−2cj+1xk

Qn(x) =
2n

−1
∑

k=0

2n

−k−1
∑

j=0

(−1)j

(

2n

k

)(

2n − k − j − 1

j

)

ak+jb2n

−k−2j−1cjxk
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Before we begin the proof of the theorem, we will need the following lemma.

Lemma 1. For all x, y ∈ R, and all n ∈ N, n ≥ 1, the following identity holds

xn − yn = (x − y)

n−1
∑

i=0

(−1)i

(

n − i − 1

i

)

(x + y)n−2i−1(xy)i (7)

Proof of Lemma 1. We proceed by induction. For n = 1, 2 the equality is easily verified, so assume the
identity is valid for all k ≤ n. Let T (n) be the right-hand side of equation (7). Since

xn+1 − yn+1 = (x + y)(xn − yn) − xy(xn−1 − yn−1)

we need only prove that
T (n + 1) = (x + y)T (n) − xyT (n − 1) (8)

Combining the sums on the right side of equation (8) by shifting indices, we have

(x − y)

[

(

n − 1

0

)

(x + y)n +

n−1
∑

i=1

(−1)i

[(

n − i − 1

i

)

+

(

n − i − 1

i − 1

)]

(x + y)n−2i(xy)i

]

Applying Pascal’s identity and bringing the leftmost term inside the sum, we obtain

(x − y)
n−1
∑

i=0

(−1)i

(

n − i

i

)

(x + y)n−2i(xy)i

Finally, we note that for n ≥ 1 the binomial coefficient is 0 when i = n. Therefore, this last expression is
equal to T (n + 1), and so we are done.

Proof of Theorem 1. Begin by expanding equation (5) via the binomial theorem to obtain

Pn(x) =
a2n

−1

r1 − r2

2n

∑

k=0

(

2n

k

)

xk
[

r1(−r2)
2n

−k − r2(−r1)
2n

−k
]

=
a2n

−1

r1 − r2

2n

∑

k=0

(

2n

k

)

xk
[

r1r2

(

(−r1)
2n

−k−1 − (−r2)
2n

−k−1
)]

=
a2n

−1

r1 − r2

[

(r1 − r2)x
2n

+
2n

−2
∑

k=0

(

2n

k

)

xk
[

r1r2

(

(−r1)
2n

−k−1 − (−r2)
2n

−k−1
)]

]

Qn(x) =
a2n

−1

r1 − r2

2n

−1
∑

k=0

(

2n

k

)

xk
[

(−r2)
2n

−k − (−r1)
2n

−k
]

We can now apply lemma (1) to the expressions of the form xn − yn in both Pn and Qn. Doing so and
canceling the factor of r1 − r2 (since b2 − 4ac 6= 0) yields

Pn(x) = a2n

−1



x2n

−

2n

−2
∑

k=0

(

2n

k

)

xk





2n

−k−2
∑

j=0

(−1)j

(

2n − k − j − 2

j

)

(−r1 − r2)
2n

−k−2j−2(r1r2)
j+1









Qn(x) = a2n

−1
2n

−1
∑

k=0

(

2n

k

)

xk





2n

−k−1
∑

j=0

(−1)j

(

2n − k − j − 1

j

)

(−r1 − r2)
2n

−k−2j−1(r1r2)
j
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Replacing r1 and r2 with their values in terms of the coefficients a, b, c gives the final form

Pn(x) = a2n

−1x2n

−

2n

−2
∑

k=0

(

2n

k

)

xk





2n

−k−2
∑

j=0

(−1)j

(

2n − k − j − 2

j

)

ak+jb2n

−k−2j−2cj+1





Qn(x) =

2n

−1
∑

k=0

(

2n

k

)

xk





2n

−k−1
∑

j=0

(−1)j

(

2n − k − j − 1

j

)

ak+jb2n

−k−2j−1cj





These equations are the same as equations (2a) and (2b), which was to be proved.

4 Further Remarks

Though this paper does not discuss any combinatorial interpretation of the polynomials Pn and Qn we
suspect that their may be some fruitful combinatorial equivalence yet to be discovered. To aid further
research in this area, we make a couple of observations about Pn and Qn.

Simply iterating Newton’s method for the general quadratic gives

N

(

Pn

Qn

)

=
aP 2

n − cQ2
n

2aPnQn + bQ2
n

=
Pn+1

Qn+1
(9)

where P0(x) = x and Q0(x) = 1 so that the initial term is z0 = x as before. The question is whether the
numerator and denominator of equation (9) are relatively prime so that we may define Pn and Qn recursively
in the natural way. This is, in fact, true as the following lemma proves.

Lemma 2. The polynomials Pn+1 and Qn+1, defined recursively as

Pn+1 = aP 2
n − cQ2

n

and
Qn+1 = 2aPnQn + bQ2

n

where P0(x) = x and Q0(x) = 1, are relatively prime except possibly in the case b2 − 4ac = 0.

(For the duration of the statement and proof of Lemma 2, we are suspending the definition of Pn and Qn

given earlier, but it will be an immediate consequence of Lemma 2 that the two definitions agree.)

Proof. We proceed inductively by assuming that Pi and Qi are relatively prime for all i ≤ n. Assume Pn+1

and Qn+1 are not relatively prime to derive a contradiction. Then there exists an irreducible polynomial α

such that α | Pn+1 and α | Qn+1. If α | Qn, then, since α | aP 2
n−cQ2

n, it follows that α | Pn which contradicts
the induction hypothesis that Pn and Qn are relatively prime. Hence α 6 | Qn. Since α | 2aPnQn + bQ2

n, we
know that α | 2aPn + bQn. But then α | Pn + b

2a
Qn and also α | Pn ±

√

c
a
Qn. Consequently, α divides their

difference, so α |
(

b
2a

∓
√

c
a

)

Qn which only occurs when b2 − 4ac = 0.

In combinatorics it is sometimes useful to consider two formal variables x, y which do not commute with
each other but instead obey yx = qxy where q is another formal variable that commutes with both x and
y. This approach, due to Schützenberger [4], is useful in applications such as counting lattice paths. In our
case, the polynomials Pn and Qn can be easily generalized to the non-commuting case. As a generalization
of the usual binomial coefficient, the q-binomial coefficient is defined as

[

n

k

]

q

=

n−k
∏

i=1

1 − qi+k

1 − qi
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and the following q-binomial theorem for non-commuting variables x, y due to Schützenberger [4] is

(x + y)n =

n
∑

k=0

[

n

k

]

q

xkyn−k

Analogously to the above, we can then define non-commuting polynomials P ′

n and Q′

n recursively as

P ′

n+1 = aP ′2
n − cQ′2

n (10a)

Q′

n+1 = aP ′

nQ′

n + aQ′

nP ′

n + bQ′2
n (10b)

where P ′

0 = x, Q′

0 = y, and yx = qxy. We conjecture explicit formulas for both P ′

n and Q′

n which happen to
be the same as equations (2a) and (2b) except for the presence of a q-binomial coefficient:

P ′

n(x, y) = a2n

−1x2n

−

2n

−2
∑

k=0

2n

−k−2
∑

j=0

(−1)j

[

2n

k

]

q

(

2n − k − j − 2

j

)

ak+jb2n

−k−2j−2cj+1xky2n

−k (11a)

Q′

n(x, y) =

2n

−1
∑

k=0

2n

−k−1
∑

j=0

(−1)j

[

2n

k

]

q

(

2n − k − j − 1

j

)

ak+jb2n

−k−2j−1cjxky2n

−k (11b)

5 Conclusion

We have taken the initial observation that Newton’s method, when applied to quadratics, produces poly-
nomials with highly composite coefficients and proved an explicit formula for the nth iterate that explains
this compositeness as a consequence of the inherent compositeness of binomial coefficients. Furthermore, a
recursive definition and a conjectural non-commutative analogue of the polynomials Pn and Qn were noted
in hopes of spurring further research into finding a combinatorial interpretation. We believe that a proof
of the non-commutative analogue, as well as the larger issue of finding a combinatorial interpretation, are
problems which merit further study. It is also worth noting that for higher-degree polynomials, such as
cubics, no similar phenomena have been found. In particular, the occurrence of coefficients with large prime
factors indicates that no simple product formulas for the coefficients exist, but this does not rule out the
existence of more complicated formulas.

We heartily thank Jim Propp, Rick Kenyon, and the rest of the Spatial Systems Laboratory at UW-
Madison for their helpful insight and generous support for this research. In addition, we are indebted to
the NSF’s Research Experiences for Undergraduates program and the NSA for funding our research, as
well as to the computing staff at UW-Madison for providing the computational resources necessary for our
investigations.
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