Office hours:

Tuesdays from 2:15 to 2:45 p.m. (in B107 until further notice)

Thursdays from 12:15 to 12:45 p.m. (in 813 Van Vleck)

Sorry about last Thursday!

 “Did you remember to write down whom you worked with?”

“Did you remember to write down how much time you spent on each of the two problems?”

Collect homework.  “Assignment #4 is on the web-page.”

Questions?
Specific problem: Find a formula for the sequence 1, 2, 5, 14, ...

with initial conditions f(0)=1 and f(1)=2, satisfying the recurrence

(*)
f(n+2)=4f(n+1)-3f(n) 

for all n ( 0.

General problem: Find a parametric formula for an arbitrary sequence satisfying (*) for all n ( 0.

Check that f(n) = 3^n and f(n) = 1^n both satisfy (*).

The equation (*) is LINEAR.  

That is: If f_1 and f_2 satisfy (*),

so does the sequence g = A f_1 + B f_2 

defined by g(n) = A f_1 (n) + B f_2 (n) ,

where A and B are arbitrary coefficients.

That is: the set of solutions to (*) form a VECTOR SPACE V.

V is a subspace of the space of infinite sequences of real numbers, or if we prefer the space of infinite sequences of complex numbers.

Some sample elements of V:

r=(1,2,5,14,41,…)

s=(1,1,1,1,1,...)

t=(1,3,9,27,81,...)

u=(1,0,-3,-12,-39,...)

v=(0,1,4,13,40,...)

The general solution is 

(A,B,-3A+4B,-3B+4(-3A+4B)=13B-12A,...)= Au+Bv

The space V of solutions to the recurrence (*) is 2-dimensional

even though the elements of V, viewed as sequences,

have infinitely many components

u and v form a basis for V, but so do s and t,

since u and v can be expressed in terms of s and t:

u=(3s-t)/2,

v=(t-s)/2.

So the general solution of (*) can also be written as As+Bt.

Why would we prefer to use s and t as a basis? ...

Because they’re nicer.

To solve our original problem, we seek coefficients A,B so that

f=As+Bt satisfies f(0) = 1 and f(1) = 2.

That is, A+B=1 and A+3B=2.

A=B=1/2.

f(n) = (3^n+1)/2.

We call (*) a second-order linear recurrence relation.

It can be written in the form

f(n+2)-4f(n+1)+3f(n)=0.

Because the right hand side is zero, we call it ... homogeneous.

More generally, any recurrence relation of the form

A_k f(n+k) + A_{k-1} f(n+k-1) + ... + A_0 f(n) = 0

(or anything obtained from this by shifting indices)

with A_k and A_0 both non-zero

is called a kth-order homogeneous linear recurrence relation

with constant coefficients.

There are also linear recurrence relations with non-constant coefficients that are functions of n; 

e.g., f(n)=n! satisfies f(n+1)-(n+1)f(n)=0.

We won’t treat these in this class.

By the end of this week, you’ll know how to solve

any recurrence relation of this form with constant coefficients,

and lots of non-homogeneous ones too.

It’s highly analogous to the theory of linear differential equations.

Let S be the space of all sequences f = (f(0),f(1),f(2),...)

(“sequence space”).

(Sometimes we’ll call f a vector, or even write it as one,

albeit with infinitely many components.)

For any sequence f, define T(f)

(also written as Tf) as the sequence whose value at n is f(n+1).

Thus

f(n+1)-3f(n)=c

can be written as

Tf-3f=c

where the right hand side is interpreted 

as the constant function with value c.

Here, as in the theory of differential equations,

we’re combining (and equating) functions.

Here T is a linear operator 

from sequence space to itself.

Let I denote the linear operator satisfying If=f for all f.

We can write the equation as Tf-3If=c.

You should think of f as a vector and T and 3I as matrices.

In fact, if you write the sequence f as an infinite column vector

with components f(0), f(1), f(2), etc. stacked vertically,

then 3I is just the infinite matrix with ... 

3’s down the (main) diagonal

and T is the infinite matrix with ...

1’s on the super-diagonal and 0’s elsewhere.

We apply the distributive property and 

We write the equation as (T-3I)f = c,

where T-3I is the infinite matrix with -3’s on the main diagonal,

1s on the super-diagonal, and 0’s elsewhere.

If we drop the idea of writing the function f as a vector

and the mapping T-3I as a matrix,

We call T-3I a linear operator on the (infinite-dimensional)

space of all sequences.

There are many linear operators on this space.

For example, the map T^2 (T composed with T) is linear,

as is T^k for any k.

Here, saying that T^k linear means

that ... (T^k)(f+g) = (T^k)f + (T^k)g for all sequences f,g

and ... (T^k)(cf) = c(T^k)f for all sequences f and all constant c.

Note that composition of linear operators

and multiplication of matrices

are essentially the same thing.

What does T-3I do to a vector f of the form f(n)=r^n? ...

It sends f to a sequence g satisfying

g(n)=(Tg)(n)-(3I)(n)=g(n+1)-3g(n)=r^{n+1}-3r^n=(r-3)r^n

=(r-3)g(n);

i.e., (T-3I)(g)=(r-3)g.

That is, g is an <fill in the blank> ... of T-3I, 

eigenfunction 

with eigenvalue r-3.

If r=3, g is <fill in the blank> ... by T-3I.



     annihilated

Hence (T-I)(T-3I) annihilates f(n)=3^n.

Likewise (T-3I)(T-I) annihilates f(n)=1^n.

But both of these operators are equal to T^2-4T+3I.

Hence any linear combination f(n)=A3^n+B1^n

is in the < fill in the blank> of T^2-4T+3I 

  null-space 

and satisfies f(n+2)-4f(n+1)+3f(n).

T-I (also sometimes written as T-1)

is called the difference operator,

and an equation like (T^2-4T+3)f=0 

is called a difference equation.

If you’ve got a sequence that you suspect satisfies a linear recurrence relation, i.e. satisfies a difference equation, i.e. is annihilated by some linear operator of the form p(T), one non-systematic but helpful way is to hit the sequence with various

simple linear operators of the form T-cI; find which one seems to make the sequence simplest.  Repeat.
Application 1: We want to find an operator that annihilates 1,2,5,14,41,… .  Each term of 1,2,5,14,41,… is roughly 3 times the preceding term, so hitting it with T-3I should make it simpler.

And indeed, T-3I turns the sequence into –1, –1, –1, –1, … .

If we hit this in turn with T-I, we get the sequence 0,0,0,… .  So (T-I)(T-3I) annihilates 1,2,5,14,41,… .

Note that 2(T-I)(T-3I) also annihilates 1,2,5,14,41,… .

Note that all the operators of the form T-cI commute with one another (why?…).

Later we’ll learn a more systematic approach to guessing recurrences, using “number walls”.

