Office hours:

Tuesdays from 2:15 to 2:45 p.m. (in B107 until further notice)

Thursdays from 12:15 to 12:45 p.m. (in 813 Van Vleck)

You never need to ask “Can I come to your office hour?”; I plan to 

be there each day, whether or not anyone shows up.

Reading for Thursday:

Intro to generating functions: Wilf (generatingfunctionology), sections 1.1-1.3 (pages 1-10).
My Maple session from last time is at

www.math.wisc.edu/~propp/491/IntroMapleSession
(but we’re going to put Maple on hold for a month or two)

Rationale for formal power series

Start with Fibonacci numbers
What is 1+x+2x^2+3x^3+5x^4+8x^5+13x^6+..., 

and why do we say it’s equal to 1/(1-x-x^2)?

Well, what do you get when you multiply it by 1-x-x^2?

Rings of formal power series

Today we’re going to eat our vegetables;

for the rest of the semester, we’ll have dessert.

Operational definition

A “formal power series” is an infinite sequence of numbers

(a_0, a_1, a_2, ...), which we operate on by certain formal rules

that are easier to remember (and whose motivation is clearer)
if we represent the sequence by the symbol

a_0 + a_1 x + a_2 x^2 + ...

(and pretend it’s a power series, 

whether or not it actually converges for any non-zero x).

You should think of this symbol as an indivisible entity.

Nothing is being added or multiplied, and most emphatically,

there is no quantity that x represents. 

For instance, the “formal derivative” of  the sequence

(a_0, a_1, a_2, a_3, ...) is defined as (a_1, 2 a_2, 3 a_3, ...). 

This definition seems more intuitive if written as

(d/dx) (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ...) 

= a_1 + 2 a_2 x + 3 a_3 x^2 +...,

but there are no issues about convergence or well-definedness.

If we restrict attention to those sequences (a_0, a_1, a_2, a_3, ...)

that vanish after some point, 

then we can correspond such a sequence

with the polynomial a_0 + a_1 x + a_2 x^2 + ... + a_n x^n, 

where a_n is the last non-vanishing term of the sequence.  

If we do this,

we find that the formal derivative operation that we’ve defined

agrees with the ordinary notion of the derivative of a polynomial.

So, when we drop the constraint that the terms of the sequence

must eventually vanish,

we get some extension of the notion of a polynomial

and its derivative.

The game we’re playing is the familiar game

of extending an algebraic system by throwing in new elements

while having them satisfy as many of the old rules as possible.

In this case, we’re extending the ring of polynomials in x

to a much larger ring.

Compare with the situation for complex numbers:

A complex number is defined as an ordered pair (a,b) 

(of real numbers) that gets operated on by certain rules 

(for instance the rule (a,b)(c,d)=(ac-bd,ad+bc)).

If we restrict attention to pairs (a,b) with b=0,

we get a number system that looks just like the real numbers.

So we view our new number system as an extension of the old.

Rules for working with formal power series:

Given two formal power series a_0 + a_1 x + a_2 x^2 + ...

and b_0 + b_1 + b_2 x^2 + ...:

1. Say they are equal iff a_n = b_n for all n.

2. Define their sum as 

    (a_0+b_0) + (a_1+b_1)x + (a_2+b_2) x^2 + ...

3. Define their product as

    (a_0 b_0) + (a_0 b_1 + a_1 b_0) x +

    (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + ...

 (Note that this is well defined: Each term in the product depends

 on only a finite number of terms of the original two sequences,

 so there are no infinite operations involved.)

Claim: The formal power series 0 + 0 x + 0 x^2 + ..., denoted by 0,

is an additive identity element.

Claim: The formal power series 1 + 0 x + 0 x^2 + ..., denoted by 1,

is a multiplicative identity element.

Claim: Every formal power series (a_0, a_1, a_2, ...) 

has a unique additive inverse (-a_0, -a_1, -a_2, ...).

Claim: The formal power series (a_0, a_1, a_2, ...) 

has no multiplicative inverse if a_0 = 0, 

and has a unique multiplicative inverse otherwise.

Proof: Write the putative inverse as (b_0, b_1, b_2, ...).

It must satisfy the following relations:

(0)  a_0 b_0 = 1,

(1)  a_0 b_1 + a_1 b_0 = 0,

(2)  a_0 b_2 + a_1 b_1 + a_2 b_0 = 0,

...

The first of these is impossible if a_0 = 0.

If a_0 is non-zero, then we must have b_0 = 1/a_0.

Then (1) implies b_1 = -a_1 b_0 / a_0 = - a_1 / (a_0)^2.

Then (2) implies b_2 = (-a_1 b_1 –a_2 b_0) / a_0 = something.

Etc.: Each of b_0, b_1, b_2, ... has a unique value that works.

How to do this explicitly in Maple:

f := sum(a(i)*x^i, i=0..4);

simplify(taylor(1/f,x,5));

Explain why I use a(i) instead of a_i; why I use simplify()

Theorem: If f,g,h are formal power series, 

with h not equal to the formal power series 0,

and fh=gh, then f=g. 

We say that the set of formal power series is a “cancellation ring”.

This has the consequence that if we throw in more new elements,

we can actually get a ring in which every non-zero element

has a unique multiplicative inverse.

This is the ring of Laurent series,

and it’ll play an important role later in the course.

But for now, we’ll stick to formal power series.
If f(x) = a_0 + a_1 x + a_2 x^2 + ...,

we define f(0) = a_0, f’(0) = a_1, f’’(0) = 2a_2, etc.

But in general, 

when you pass from polynomials to formal power series,

you lose the ability to substitute a value for x.

Analogue: When you pass from real numbers to complex numbers,

you lose the ordering property (less-than vs. greater-than).

Suppose f_1(x), f_2(x), f_3(x), … are formal power series such that 

the constant term of f_n is 0 for all but finitely many n, 

the linear term of f_n is 0 for all but finitely many n,

the quadratic term of f_n is 0 for all but finitely many n, etc.

Then there’s a natural way to define a formal infinite sum S(x) = 

( f_n(x), so that the coefficient of x^k in S(x) is the sum of all the coefficients of x^k in f_1(x), f_2(x), f_3(x), … (only finitely many of which are non-zero).

E.g., suppose f(x) is a power series with f(0) = 0, so that

f(x) = a_1 x + a_2 x^2 + a_3 x^3 + …

[f(x)]^2 = (a_1^2) x^2 + (2 a_1 a_2) x^3 + …

[f(x)]^3 = (a_1^3) x^3 + …

etc.

Then we have (_{n=0}^{(} f(x)^n

= 1 

     + a_1 x +    a_2    x^2  +         a_3      x^3 + …

                  +  a_1^2  x^2  + (2 a_1 a_2) x^3 + …

                                           +     a_1^3    x^3 + …

= 1 + (a_1) x + (a_2 + a_1^2) x^2 + (a_3 + 2 a_1 a_2 + a_1^3) x^3

   + …

What should the formal infinite sum be equal to? … 1/(1-f(x)).

Let’s multiply the formal infinite sum by 1-f(x) and see what we get.

1-f(x) = 1 – a_1 x – a_2 x^2 – a_3 x^3 – …

We get 1 + (a_1 – a_1) x + (a_2 + a_1^2 – a_1^2 – a_2) x^2 + …

= 1 + 0x + 0x^2 + …

Note that in the ring of formal power series, ( (1/2)^n is not defined as a formal infinite sum; we can only take a formal infinite sum if the degrees of the terms increase to infinity.

As a special case of our definition of formal infinite sums, we have

(a_n x^n = a_0 + a_1 x + a_2 x^2 + …

Remember what this really means:

(a_0,0,0,…) + (0,a_1,0,0,…) + (0,0,a_2,0,…) + (0,0,0,a_3,…) + …

= (a_0,a_1,a_2,a_3,…).

Now that we know this, you can go back and ignore that warning I began with (“nothing is being added or multiplied”).  You can think about a_0 + a_1 x + a_2 x^2 + … as being a bona fide infinite sum. 

Theorem: Let f_1, f_2, f_3, ... be elements of

the ring of formal power series.

Then the infinite series f_1 + f_2 + f_3 + ...

exists if and only if ord(f_n) ( (,

where ord(f) = min {k: the coefficient of x^k in f is non-zero}.

Say why it’s called the “order” of  f.
Equivalently, the formal infinite sum f_1 + f_2 + f_3 + … is well-defined if for all k, the coefficients of x^k in the partial sums f_1, f_1 + f_2, f_1 + f_2 + f_3, … eventually stabilize.

We define formal infinite products f_1 f_2 f_3 … whenever the coefficients of the partial products all eventually stabilize.

E.g., try (1 + x) (1 + x^2) (1 + x^4) (1 + x^8) …:

(1+x) (1+x^2) = 1 + x + x^2 + x^3,

(1+x) (1+x^2) (1+x^4) = 1 + x + x^2 + x^3 + … + x^7,

(1+x) (1+x^2) (1+x^4) (1+x^8) = 1 + x + x^2 + x^3 + … + x^15,

etc.;

so (_{n=0}^{(} (1 + x^(2^n)) = 1 + x + x^2 + … = 1 / (1 – x).

With this notion of formal infinite sums, all the manipulations you’re used to work; e.g., ((f_n+g_n) = (f_n + (g_n.

In fact, here’s something really nice:

There’s no longer any difference between convergence and absolute convergence.

I.e., if a series converges, you can re-arrange the terms any way you like and it’ll still converge to the same sum.

Theorem: If f(0) = 0,

then 1/(1-f) = 1 + f + f^2 + f^3 + ... (Ran out of time; to be cont’d)

