Math 491, Problem Set #5 (due 9/25/03)

Let a_n be the number of domino tilings of a 3-by-2n rectangle, and let b_n be the number of domino tilings of a 3-by-(2n + 1) rectangle from which a corner square has been removed. We showed in class that $a_n = a_{n-1} + 2b_{n-1}$ and $b_n = a_{n-1} + 3b_{n-1}$ for all $n \ge 1$.

1. Introduce

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots$$

and

$$B(x) = b_0 + b_1 x + b_x x^2 + \dots$$

Write down two algebraic relations between A(x) and B(x) that represent the two recurrence relations (taking care to incorporate the boundary conditions correctly), and solve for A(x) and B(x).

2. We also saw in class that

$$\left(\begin{array}{c}a_n\\b_n\end{array}\right) = \left(\begin{array}{cc}1&2\\1&3\end{array}\right)^n \left(\begin{array}{c}1\\1\end{array}\right).$$

Use linear algebra to derive a formula for a_n .

Please be sure to write down how many hours you spent working on the assignment, and whom you worked with.