Math 491, Problem Set #4(due 9/23/03)

- 1. (a) Does there exist a polynomial p(t) of degree 3 such that the linear operator p(T) annihilates the sequence whose *n*th term (for $n \ge 0$) is $3^n + 2^n + 1^n$? Exhibit such a polynomial or explain why none exists.
 - (b) Same as (a), but with "degree 3" replaced by "degree 4".
 - (c) Same as (a), but with "degree 3" replaced by "degree 2".
- 2. Let F_n be the *n*th Fibonacci number, as Wilf indexes them (with $F_0 = F_1 = 1, F_2 = 2$, etc.). Give a simple homogeneous linear recurrence relation satisfied by the sequence whose *n*th term is
 - (a) nF_n ;
 - (b) $1F_1 + 2F_2 + \ldots + nF_n;$
 - (c) $nF_1 + (n-1)F_2 + \dots + 2F_{n-1} + F_n;$
 - (d) F_n when n is odd, and 2^n when n is even.

In each case, an explanation should be included.

Please be sure to write down how many hours you spent working on the problems, and whom you worked with.