Math 491, Problem Set \#20
(due 12/11/03)

1. (from unpublished work of Douglas Zare) Let $G_{m, n}$ be the directed graph with vertex set $\{(i, j) \in \mathbf{Z} \times \mathbf{Z}: 0 \leq i \leq m, 0 \leq j \leq n\}$, with an arc from (i, j) to $\left(i^{\prime}, j^{\prime}\right)$ iff $\left(j^{\prime}-j, i^{\prime}-i\right)$ is $(1,0),(0,1)$, or $(1,1)$.
(a) For any legal path P in $G_{m, n}$ from $(0,0)$ to (m, n), define $d(P)$ as the number of diagonal steps in P plus the number of upward steps in P that are followed immediately by a rightward step. Show that the number of paths P with $d(P)=k$ is exactly $2^{k}\binom{m}{k}\binom{n}{k}$.
(b) Let M be the $(n+1)$-by- $(n+1)$ matrix with rows and columns indexed from 0 through n whose i, j th entry is the total number of paths in $G_{i, j}$ from $(0,0)$ to (i, j). Use the result of part (a) to find the LDU decomposition of M. That is: find square matrices L, D, U such that $L D U=M$, where L (resp. U) is a lower (resp. upper) triangular matrix with 1's on the diagonal and where D is a diagonal matrix (whose diagonal entries are permitted to be different). Use this in turn to compute $\operatorname{det}(M)$.
(c) Interpret M as the Lindstrom matrix of some directed graph and use this in turn to interpret $\operatorname{det}(M)$ as the number of perfect matchings of some graph H_{n}. Be explicit about what H_{n} looks like.
