Math 491, Problem Set \#13

(due $11 / 11 / 01$)

1. An "augmented Aztec diamond of order n " is a subset of the square grid formed by symmetrically stacking rectangles of height 1 and respective widths $2,4,6, \ldots, 2 n-2,2 n, 2 n, 2 n, 2 n-2, \ldots, 6,4,2$ (note that there are 3 rectangles of width $2 n$ being stacked). Here, for instance, is an augmented Aztec diamond of order 3:

Express the generating function $\sum_{n \geq 0} a_{n} t^{n}$ as an algebraic function of t, where a_{n} denotes the number of domino-tilings of the augmented Aztec diamond of order n, and we put $a_{0}=1$. (Note that the augmented Aztec diamond of order 1 is just a rectangle of height 3 and width 2.)
2. Use the exchange principle for 2-routings to find a compact formula for the number of lozenge-tilings of the semiregular hexagon with sidelengths $a, b, 2, a, b, 2$.

