Any questions about the exam or the material?

Even if you can’t complete a problem, go for partial credit!  Don’t cite facts randomly by free association, but do cite all facts that are relevant to the problem, even if don’t know how to fit them together.  Think aloud (or rather in writing) about why you’re stuck.  Make guesses, and explain why they’re guesses rather than rigorously known; guess about what you might have to do to prove your guesses.

This test is an opportunity for you to show me what you know and what you can do.  Demonstrate this in any way you think best.  If you can’t solve a problem, solve a simplified version of the problem that deals with the same issues.  If nothing else, you can say “This reminds me of homework problem X, so the same method probably applies.”  Document your unsuccessful attempts to solve the problem, and explain why they failed.  Etc.!

The take-home exam (now available on the web) will be due at the start of class next Tuesday (Oct. 28).  If you’re finding any of the material difficult, now is the time to see me and get help.

Extra office hours on Friday (1-4) and Monday (1-4).  (Slight chance I’ll attend a seminar on Monday from 2:30 to 3:30.)  I’ll also try to answer questions over the weekend by email.

TODAY:

The Catalan recurrence

The reflection principle

Catalan recurrence

Let B(x) be the generating function for ballot sequences, where a ballot sequence of length 2n has weight x^n:

B(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + …

        = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + …

where c_0, c_1, c_2, … are the Catalan numbers.

Last time we proved a quadratic relation satisfied by B(x):


B(x) =  1 + x B(x)^2.

Why does this make sense?

Taking the coefficients of x^n on both sides, we get


c_n = c_0 c_{n-1} + c_1 c_{n-2} + … + c_{n-1} c_0

Conversely, if we were given this recurrence relation, we could

turn it into a quadratic relation for the generating function associated with the sequence.

Let’s test ourselves on this: Suppose we have a sequence satisfying

the initial conditions d_0 = d_1 = 1 and the recurrence

(*)
d_n = d_0 d_{n-2} + d_1 d_{n-3} + … + d{n-2} d_0

for all n ( 2.   d_3 = 2, d_4 = 3, d_5 = 6, d_6 = 11, d_7 = 22, etc.

Multiply both sides of (*) by x^n and sum:

sum_{n(2}  d_n x^n 

= sum_{n(2} (d_0 x^0) (d_{n-2} x^{n-2}) x^2 

                       + (d_1 x^1) (d_{n-1} x^{n-1}) x^2


                       + (d_{n-2} x^{n-2}) (d_0 x^0) x^2

Put D(x) = sum_{n(0} d_n x^n.  Then we get

D(x) – d_0 – d_1 x = x^2 D(x) D(x)

or

x^2 D(x)^2 – D(x) + 1 + x

so


D(x) = (1 ( sqrt(1 – 4x^2(1+x)) / (2x^2)

i.e.,


D(x) = (1 – sqrt(1 – 4x^2 – 4x^3)) / (2x^2)

One great thing about Maple is that you can feed it this expression

and ask it to take the Taylor expansion, and it’ll do it; and you get back the sequence 1,1,1,2,3,6,11,22,…, which shows that we didn’t make a mistake.

Return to Catalan half-triangle:
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Note diagonals: degree 0, degree 1, degree 2 (check!), ...

For an extra challenge, I asked you to conjecture a formula for the entries in this table (hint: each can be expressed as a difference of two binomial coefficients).

Did any of you do this? …

Did you find a proof? …

The reflection principle

C_n = the number of NE,SE paths from (0,0) to (2n,0) with steps 

(+1,+1) and (+1, –1) that don’t touch the line y=-1.

What’s the total number of paths from (0,0) to (2n,0), regardless


of whether they touch the line or not? ... (2n choose n).

So the number of NE,SE paths from (0,0) to (2n,0) that DO touch


the line y = –1 is (2n choose n) – (2n choose n)/(n+1)


= (2n)!/n!n! [1 – 1/(n+1)] = (2n)!/n!n! [n/(n+1)]


= (2n)!/(n-1)!(n+1)! = (2n choose n-1).

Is there a direct way to count the NE,SE paths from (0,0) to (2n,0)


that DO touch the line?

Yes.

Here is a direct proof: 

Let P be the first point on the path that lies on y = –1.

Draw picture.

Take the part of the path between (0,0) and P and reflect it through


the line y = –1.

Then you get a path from (0,-2) to (2n,0).

Is this a bijection?  Yes!  What’s its inverse?

Conversely, given a path from (0,-2) to (2n,0), let P be the first


point on the path that lies on y = –1 (such a point must exist)


and reflect the part of the path from (0,0) to P through the


line y = –1.

This gives a bijection between 

NE,SE paths from (0,0) to (2n,0) that touch the line y = –1

and


paths from (0, –2) to (2n,0) (unconstrained), with steps


(+1,+1) and (+1,-1).

How many such paths are there?  (2n choose n–1).

This gives us a new derivation of the formula for C_n!

So C_n = (2n choose n) – (2n choose n–1) = 

#(unconstrained NE,SE-paths from (0,0) to (2n,0)) minus

#(NE,SE-paths from (0,0) to (2n,0) that touch the line y = –1).

This can be generalized to give a formula for all the entries in the


Catalan triangle I showed you.

Each entry is a difference of two binomial coefficients.

Did any of you find this?

