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Lindstrom’s Lemma

Suppose we have an acyclic directed G graph with n sources 

s_1,...,s_n and n terminals t_1,...,t_n with the property that 

for any non-identity permutation pi, there is no way to join

s_1 to t_{pi(1)}, s_2 to t_{pi(2)}, ... s_n to t_{pi(n)} with

non-intersecting paths.  Then the number of routings that

join s_i to t_i (for all i from 1 to n) equals the determinant

of the n-by-n matrix N with N(i,j) = # of paths from s_i to

t_j.

Application: Let s_1,...,s_n be the points (i,0) with i going from


0 down to –(n-1), and let t_1,...,t_n be the point (0,j) with j 

going from 0 up to n-1.  Use arcs that go over 1 or up 1.

Lindstrom’s Lemma tells us that the number of routings is the


determinant of the matrix whose i,jth entry is (i+j)!/i!j!.

But geometrically it’s clear that in fact the number of routings is


... 1!

So we’ve proved combinatorially that for all n, the upper left 

n-by-n block of the infinite Pascal matrix has determinant

1.

So this wasn’t a very interesting enumerative application of 

Lindstrom’s Lemma, but now we’ll see a much more

interesting one.

Plane partitions and tilings

An ordinary partition is a list of parts, in weakly decreasing order:



5 3 2 2

You can imagine there being infinitely many zeroes at the end.

A plane partition is a two-dimensional array of parts, weakly


decreasing by rows and columns, with all but finitely many


entries empty (i.e., equal to zero):



5 3 2 2



4 3 1



2 2 1



1

Just as an ordinary partition is represented by a 2D Young 

diagram, a plane partition is represented by a 3D Young

diagram.

Show picture.
A plane partition with rows of length at most A, columns of length 

at most B, and entries no larger than C can be depicted as a 

3D Young diagram that fits in an A by B by C box, which in 

turn can in turn be depicted as a tiling of a semiregular 

hexagon with sides of length A,B,C,A,B,C, which can in turn

be depicted as a routing through the region


{(x,y): 0 leq x leq B+C-1, 0 leq y leq A+C-1,


C-1 leq x+y leq A+B+C-1}

with C sources and C sinks, using East- and North-going 

edges.

Try it with A=B=C=3:


[(6 choose 1)  (6 choose 2)  (6 choose 3)]


[(6 choose 2)  (6 choose 3)  (6 choose 4)]


[(6 choose 3)  (6 choose 4)  (6 choose 5)]


[20  15   6]


[15  20 15]


[  6  15 20]

I’m going to take the determinant in a way most of you probably 

haven’t seen before:

[175  105]

[105  175] 

19600

19600 / 20 = 980

Dodgson condensation

Who was Dodgson?

Suppose M is an n-by-n matrix with n > 1.  Let


I = the upper left (n-1)-by-(n-1) minor,


J= the upper right (n-1)-by-(n-1) minor,


K = the lower left (n-1)-by-(n-1) minor,


L = the lower right (n-1)-by-(n-1) minor,


H = the central (n-2)-by-(n-2) minor.

Then det(M)det(H) = det(I)det(L) – det(J)det(K).

Application: Compute det([1,1,1],[1,2,3],[1,3,6]).

Mention the case where n=2 and H is 0-by-0.

Recursive scheme for computing det(M) in terms of the 

determinants of its connected minors.

Proof: See Zeilberger: arxiv.org/abs/math.CO/9808079

Why isn’t it taught?

Because it doesn’t always work.

(Sometimes it gets stuck at 0/0.)

Research problem: Fix it!

