TODAY:

Number partitions

The long recurrence for counting partitions

How’s Maple working out?  Do you have the resources you need 

in order to learn how to use it?

Have you found it helpful?  How?

Number partitions

Recall: [n] = 1 + q + q^2 + … + q^{n–1}.

(In this setting, “q” is more common than “x”; in fact, power series


involving partitions are often called q-series.)

One thing that’s nice about guessing formulas for products of 

q-integers is that there are more clues to what the relevant 

factorization: 12 can be factored as 2 times 6 or 3 times 4


or even 2 time 2 times 3, but [2][6], [3][4], and [2][2][3]


are distinct polynomials.  (Check:

[2] [2] = (1+q)(1+q) (1+q+q^2+q^3 = [4].)

One tricky thing, though is that [m] often factors; e.g., 

[4] = (1+q)(1+q^2) = [2](1+q^2)

[6] = [2][3](1-q+q^2) 

When you’re doing the homework problem that’s due next 

Thursday, you will find it helpful to rewrite 1+q^2 as [4]/[2], 

1–q+q^2 as [6]/[2][3], etc.

If we multiply 1 + q + q^2 + … + q^{n–1} by 1–q, we get 1–q^n.

Some authors prefer to use this as “[n]”.

Today we’ll see why.

I won’t prove Jacobi’s triple product identity; I’ll hand out a proof 

on Thursday (from Bressoud’s book)

Recall: q-binomial coefficient = sum of q-weights of all lattice 

paths from (0,0) to (a,b), where weight = q to the power of 

the area under the path.

Each such lattice path is associated with a partition of some 

non-negative integer into at most a positive integers, each no 

larger than b.
By convention, we say that the number 0 has one partition, the 

“empty partition”.

We let p(n) be the number of partitions of n.  Thus


p(0) = 1, p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7,


p(6) = 11, [...] p(7) = 15, ...

(_n p(n) q^n = 

(1+q^{1}+q^{1+1}+q^{1+1+1}+…)(
(1+q^{2}+q^{2+2}+q^{2+2+2}+…)(
(1+q^{3}+q^{3+3}+…)((1+q^{4}+…)(…

Proof 1: See it directly.

Proof 2: Rewrite the q-binomial coefficient (A+B choose A)_q as


[A+1][A+2][A+3]…[A+B]/[1][2][3]…[B] 


(1–q^{A+1})(1–q^{A+2})…(1–q^{A+B})/

(1–q)(1–q^2)…(1–q^B) 


and take the limit as A,B((.

More generally: if S is any subset of the positive integers, the 

number of partitions of n into parts belonging to S equals the 

coefficient of x^n in the (finite or infinite) product


prod_{k in S} 1/(1-q^k).

E.g., if a_n is the number of partitions of n into 2’s, 3’s, and 5’s,


then sum_{n ( 0} a_n x^n = … 1/(1-q^2)(1-q^3)(1-q^5).

This is a rational function, so you should remember what you’ve


learned about rational generating functions.

What sort of linear recurrence do these a_n satisfy, where a_n =


the number of partitions of n into 2’s, 3’s, and 5’s? …

A recurrence of degree 11.

What can you say about an exact formula for a_n? …

It is a ``quasi-polynomial function’’ (discuss) of n, of the form



f(n) = C_n n^2 + D_n n + E_n


where C_n, D_n, and E_n are periodic mod (2)(3)(5).

Equivalently, f(n) = p_n (n) where p_1, p_2, ... is a periodic


sequence of degree-2 polynomials with period 30.

The coefficient of  x^n in (1+x^2)/(1–x^3) is the number of

partitions of n into parts of size 2 and 3, where the part

of size 2 cannot be repeated.  Call it a_n.

The coefficient of x^n in (1-x^3)/(1+x^2) is the sum of the weights

of all the partitions of n into parts of size 2 and 3, where

the part of size 3 cannot be repeated, where the weight of a

partition is -1 to the power of the number of parts.  Call the

coefficient b_n.

Claim: For n > 0, sum_{k=0}^n a_k b_{n-k} = 0.

Algebraic proof: Same as in last problem of midterm.

Good challenge: Find a bijective proof.

Go to B107 (and leave note on door)

The long recurrence for counting partitions

Let’s follow Euler and take the reciprocal of the g.f. for partitions.

… (use computer) …

Pentagonal number theorem:

(_n (1-q^n) = 1 – q – q^2 + q^5 + q^7 – q^12 – q^15 + + – – …


= (_{n in Z} (-1)^n q^{n(3n+1)/2}

Proof: The handout you’ll get on Thursday derives this from the 

Jacobi triple product identity.
Consequence: p(n) = p(n-1)+p(n-2)-p(n-5)-p(n-7)+p(n-12)+p(n-15)


– – + + – – + + … (provided we interpret p(k) as 0 for k<0).

Theorem: Any formal power series with integer coefficients and constant term 1 admits a (unique) convergent infinite formal product expansion of the form 

 (1-q)^{a_1} (1-q^2)^{a_2} (1-q^3)^{a_3} (1-q^4)^{a_4} …

Proof by example: Take 1 + 2q + 2q^4 + 2q^9 + 2q^{16} + … 
