TODAY:

Short recurrence for counting lattice paths by q-weight

Number partitions

Short recurrence for counting lattice paths by q-weight

Warm-up: combinatorial interpretation of


(a choose b) b = a (a-1 choose b-1)

Consequence: (a choose b) = (a/b) (a-1 choose b-1)

Put a=m+n, b=m 

(motivation: counting lattice paths from (0,0) to (m,n))

Let P(m,n;1) = the polynomial P(m,n) from the homework due 

today, evaluated at q=1; i.e. P(m,n;1) = the number of lattice 

paths from (0,0) to (m,n).

P(m,n;1) = (m+n)/(m) P(m-1,n;1)

This is a special case of a q-version you proved in HW #10:

P(m,n) = ((1-q^(m+n))/(1-q^m)) P(m-1,n)


= ((1+q+...+q^(m+n-1))/(1+q+...+q^(m-1))) P(m-1,n)

(just send q ( 1)

Definition: [n] = 1+q+...+q^(n-1).  We call this the q-analogue 

of n.  (Some authors prefer to define [n] as 1-q^n.)  

[1], [2], [3], ... are the q-integers.

(Compare with an earlier definition of [n] as {1,...,n}.  I’ll continue 

to use both, but it should always be clear which one I have in 

mind.)
Digress for a moment: We defined P(m,n) as a sum of weights of


lattice paths, where the weight of a lattice path was defined


as q to the power of the sum of the heights of the horizontal 

edges.  (Give example: compute P(2,2).)  Is there another 

way to think about the weight? ...: q to the power of the area 

under the path.  

Let’s find a direct proof of 

(1+q+...+ q^(m-1)) P(m,n) = (1+q+...+q^(m+n-1)) P(m-1,n): Motivation: non-q version: m P(m,n) = (m+n-1) P(m-1,n)
LHS: Counts lattice paths from (0,0) to (m,n) with a marked 

horizontal edge, where the area associated with such a 

marked path is defined as its ordinary area plus the 

x-coordinate of the left endpoint of the marked edge.  

RHS: Counts lattice paths from (0,0) to (m-1,n) with a marked 

vertex, where the area associated with such a marked path is 

defined as its ordinary area plus the x-coordinate of the 

vertex plus the y-coordinate of the vertex.

Weight-preserving bijection from LHS-objects to RHS-objects: 

... Replace each marked dot by a marked horizontal edge, 

shifting everything after it to the right.

Do example with (m-1,n) = (1,1), (m,n) = (2,1).

Discuss why it’s a bijection. 

Analysis: Consider a lattice-path from (0,0) to (m,n) with weight 

x^A. When you mark a vertex (i,j) on a lattice-path from 

(0,0) to (m-1,n), you get a vertex-marked path of weight 

x^(A+i+j).  On the other hand, if you replace the marked 

vertex by a marked horizontal edge, you get an edge-marked 

path of weight x^(A+i+j).  

Upshot: P(m,n) = ([n+m]/[m]) P(m-1,n).  

Consequence: P(m,n) 

= ([n+m]/[m]) ([n+m-1]/[m-1]) …([n+1]/[1]) P(0,n)

= [n+1][n+2]...[n+m]/[1][2]...[m].

P(m,n) is a reciprocal polynomial, i.e., one whose coefficients read 

the same forwards as backwards.  Why? ... Rotating a lattice 

path by 180 degrees turns a path of area k into one of area 

mn-k.

Why do we have P(m,n) = P(n,m) ? ... flip over diagonal joining

(m,0) and (0,n).

If we define [k]! = [1][2]...[k], we can write


P(m,n) = [m+n]!/[m]![n]!.

Fun problems to study (due a week from today):
How many lattice paths in the m,n rectangle remain the same when 

you flip them across the diagonal joining (n,0) and (0,n)?  

What is the sum of their q-weights?

One thing that’s nice about guessing formulas for products of 

q-integers is that there are more clues to what the relevant 

factorization: 12 can be factored as 2 times 6 or 3 times 4


or even 2 time 2 times 3, but [2][6], [3][4], and [2][2][3]


are distinct polynomials.  (Check:

[2] [2] = (1+q)(1+q) \not\eq 1+q+q^2+q^3 = [4].)

One tricky thing, though is that [m] often factors; e.g., 

[4] = (1+q)(1+q^2) = [2](1+q^2)

[6] = [2][3](1-q+q^2) 

When you’re doing the homework problem that’s due next 

Thursday, you will find it helpful to rewrite 1+q^2 as [4]/[2], 

1-q+q^2 as [6]/[2][3], etc.

Number Partitions

A partition of the positive integer n is a way of writing n as a sum


of one or more positive summands, where “order doesn’t 

matter”.

Thus, the number 4 has 5 partitions:


1+1+1+1


1+1+2=1+2+1=2+1+1


1+3=3+1


2+2


4

The summands are called “parts”, and it’s usually convenient to 

write them either in weakly ascending OR weakly 

descending order.  (Discuss what I mean by “weakly”.)
By convention, we say that the number 0 has one partition, the 

“empty partition”.

We let p(n) be the number of partitions of n.  Thus


p(0) = 1, p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7,


p(6) = 11, [...] p(7) = 15, ...

There’s no simple exact formula for p(n), though there is an 

awesomely complicated one due to Hardy and Ramanujan, 

and there is a beautiful and simple form for the generating 

function of this sequence.

We can represent a partition by a diagram of dots, called a Ferrers


diagram, or by a diagram of boxes, called a Young diagram:








____________

 




o  o  o  o  o
|__|__|__|__|__|

5+3+2
(5,3,2)
o  o  o

|__|__|__|






o  o   
 
|__|__|

(This is the English style; the French flip their Ferrers and Young 

diagrams into the first quadrant.)
Put origin at lowest left vertex.

If a partition has B parts, and the largest part is A, then the Young 

diagram has a boundary that consist of three parts: a straight 

path from (0,0) to (0,B), a straight path from (0,B) to (A,B), 

and a NE, SE, lattice path from (0,0) to (A,B) that begins

with an E-step and ends with an N-step. 

If we drop the constraint that the lattice path has to begin with an 

E-step and end with an N-step, we get all the partitions with at most B parts, and with each part of size at most A.

Show how the partition (2,1) fits inside this diagram.  

These are precisely the partitions whose Young diagram fits inside

an A-by-B rectangle.

The number of such partitions equals the number of lattice paths 

from (0,0) to (A,B), namely (A+B)!/A!B!.

What if we want to “q-count” the partitions?

But wait: we already have!

(Discuss; point out that we’re complementing, but that it doesn’t

matter, because of the symmetry.)

Theorem (already proved): The number of partitions of n with at 

most B parts, each of size at most A, is equal to the 

coefficient of q^n in the polynomial [A+B]!/[A]![B]!

These polynomials are called the Gaussian polynomials, or the


q-binomial coefficients.

What happens when A or B goes to infinity, or both of them do?

Write [A+B]!/[A]![B]! = ([A+1]/[1])([A+2]/[2])...([A+B]/[B])


= ((1-q^{A+1})/(1-q)) ((1-q^{A+2})/(1-q^2)) ...



((1-q^{A+B})/(1-q^B))

If B goes to infinity, this goes to 1/(1-q)(1-q^2)...(1-q^A).

Consequence: The number of partitions of n into parts of size at 

most A is equal to the coefficient of x^n in the formal power 

series 1/(1-q)(1-q^2)...(1-q^A).

Note direct proof.

More generally: if S is any subset of the positive integers, the 

number of partitions of n into parts belonging to S equals the 

coefficient of x^n in the (finite or infinite) product


prod_{k in S} 1/(1-q^k).

E.g., if a_n is the number of partitions of n into 2’s, 3’s, and 5’s,


then sum_{n ( 0} a_n x^n = … 1/(1-q^2)(1-q^3)(1-q^5).

This is a rational function, so you should remember what you’ve


learned about rational generating functions.

What can you say about an exact formula for a_n = the number of


partitions of n into 2’s, 3’s and 5’s? ...

It is a ``quasi-polynomial function’’ (discuss) of n, of the form



f(n) = C_n n^2 + D_n n + E_n


where C_n, D_n, and E_n are periodic mod (2)(3)(5).

Equivalently, f(n) = p_n (n) where p_1, p_2, ... is a periodic


sequence of degree-2 polynomials with period 30.

The g.f. 1/(1-q)(1-q^2)...(1-q^m) also counts partitions with at 

most m parts.

Partitions with exactly m parts:


1/(1-q)...(1-q^m) – 1/(1-q)...(1-q^{m-1}


= q^m/(1-q)...(1-q^m).

Mention bijective proof, too.

Partitions with largest part m: also q^m/(1-q)...(1-q^m).

Mention bijective proof.

Take A,B both to infinity: The generating function for partitions 

with no constraints is … 1/(1-q)(1-q^2)(1-q^3)...

Discuss why this makes sense.

The generating function for partitions into distinct parts is …

(1+q)(1+q^2)(1+q^3)...

Discuss.

The generating function for partitions into distinct parts with

exactly m parts is

q^{1+2+...+m} / (1-q)(1-q^2)...(1-q^m).

Discuss.

Theorem (Euler): The number of partitions of n into distinct parts


equals the number of partitions of into odd parts.

Algebraic proof: (1+x)(1+x^2)(1+x^3)(1+x^4)...


    1-x^2     1-x^4     1-x^6   1-x^8


= ---------  ---------  --------  --------- ...


      1-x       1-x^2     1-x^3   1-x^4


= 1/(1-x)(1-x^3)(1-x^5)(1-x^7)...

Bijective proofs are also known.

Good challenge: find one!

The coefficient of  x^n in (1+x^2)/(1–x^3) is the number of

partitions of n into parts of size 2 and 3, where the part

of size 2 cannot be repeated.  Call it a_n.

The coefficient of x^n in (1-x^3)/(1+x^2) is the sum of the weights

of all the partitions of n into parts of size 2 and 3, where

the part of size 3 cannot be repeated, where the weight of a

partition is -1 to the power of the number of parts.  Call the

coefficient b_n.

Claim: For n > 0, sum_{k=0}^n a_k b_{n-k} = 0.

Algebraic proof: Same as in last problem of midterm.

Good challenge: Find a bijective proof.

The long recurrence relation for p(n):

p(n) = p(n-1) + p(n-2) – p(n-5) – p(n-7) + p(n-12) + p(n-15)

· p(n-22) – p(26) + p(n-35) + p(n-40) –  –  + + ...

Equivalently: 

Euler’s pentagonal number theorem:

(1-x)(1-x^2)(1-x^3)... 

= sum_{n in Z} (-1)^n q^{3n(n+1)/2}.

Explain why it’s equivalent.

Franklin’s bijective proof:

Assign a partition with distinct part weight (-1)^k, where k is


the number of parts, so that the coefficient of x^n in the


LHS is the sum of the weights of the partitions of n into


distinct parts.

Say a partition with distinct parts is pentagonal if the parts are 

m+1,m+2,...,m+n with n=m or m+1.

Claim: For all n, the sum of the weights of all the non-pentagonal


partitions of n into distinct parts equals 0.

Very tricky exercise: Find a sign-reversing involution.  (The details


are in just about any treatment of partitions you could find.)

Give details, if time permits and the students desire. 

