Welcome back!

There are two more lectures during the regular term

The take-home final exam will be due on Thursday, Dec. 18 at


11 a.m.

It will not cover any material covered after today.

Questions (logistical or mathematical)?

TODAY:

From routings to perfect matchings (relevant to HW)

Lindstrom with weights

Number walls and linear recurrences

[Frieze patterns and triangulations]

From routings to perfect matchings

Discuss why this works for lozenge tilings and domino tilings.

Let G be any acyclic directed graph with n sources s_i and n


terminals t_i.  Then the n-routings through G correspond to


the perfect matchings of the “deleted double” of G, defined


as follows: 

For each vertex v of G, create a pair of vertices v( and v+ 

and join them by an edge.  

For each arc v(w in G, join v+ and w( by an edge.

Delete v( if v is a source.

Delete v+ if v is a sink.

Check that this works for lozenge tilings of hexagons and domino


tilings of squares.

Relevant to homework!

Lindstrom with weights

Let G be an acyclic directed graph whose vertices and edges have 

been assigned weights; then we can define the weight of a 

path as the product of the weights of its constituent vertices 

and edges, and we can define the weight of a routing as the 

product of the weights of its constituent paths.

Fix vertices v_1,...,v_n,w_1,...,w_n, and let M_{i,j} be the sum


of the weights of all the paths in G from v_i to w_n.  Then


det(M) equals the signed sum of the weights of all the 

routings that join {v_1,...,v_n} to {w_1,...,w_n}, where a

routing that joins v_i to w_{pi(i)} (i=1,...,n) counts as 

positive or negative according to whether sign(pi)= +1 or (1.

Key step in proof: The weight of a routing isn’t affected when we 

do an exchange-move on two intersecting paths

Mention Gessel and Viennot

Example: Look at paths in the directed graph
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(no lower levels) where the unmarked edges have weight 1 

and the marked edges have weight x, and all vertices have

weight 1.

Let P_n (x) be the sum of the weights of all the paths from vertex


0 to vertex n.

Thus P_0 (x) = 1,

P_1 (x) = 1, 

P_2 (x) = 1+x^2, 

P_3 (x) = (1+x^2)^2+x^2 = 1 + 3x^2 + x^4,

...

Claim: P_{n+1} (x) = ((P_n (x))^2 + x^2) / P_{n-1} (x).

Proof? ...

Proof: By the weighted Lindstrom lemma, the sum of the weights


of the 2-routings that join 0 and 1 to n and n+1 is the


determinant P_{n+1} P_{n-1} ( P_n P_n.  But by direct


inspection, there is only one such 2-routing, and its weight


is x^2.

Consequence: Consider the generalized frieze pattern with 
determinant d and top two rows (row 0 and row 1) consisting 

entirely of 1’s.  Then each entry in row n equals P_n (x).

Not surprisingly, the polynomials P_n (x) also relate to domino 


tilings of rectangles.

Turn paths in the digraph into matchings of a honeycomb graph,


and turn these into matchings of a square-grid graph, with


weights.

P_n (x) equals the sum of the weights of the domino tilings of a


2-by-(2n-2) rectangle, where the weight of a tiling is x to the 

power of the number of vertical dominos.

Connect this with something we saw in problem set #1, problem


#2

Number walls

Remind students of definitions of Hankel and Toplitz; point out


the connection between them.

Every connected minor of a Hankel (Toplitz) matrix is a Hankel


(Toplitz) matrix.

Proposition: If the sequence a_0, a_1, a_2, ... satisfies a linear


recurrence relation of order m with constant coefficients


(i.e., there exist non-zero constants c_0,...,c_m such that

c_0 a_n + c_1 a_{n+1} + ... + c_m a_{n+m} = 0 for all n,

then every (m+1)-by-(m+1) Hankel matrix

 [a_{n}     a_{n+1}       a_{n+2}      ... a_{n+m}    ]

[a_{n+1}  a_{n+2}       a_{n+3}      ... a_{n+m+1}]

[a_{n+2}  a_{n+3}       a_{n+4}      ... a_{n+m+2}]

  ...       ...              ...             ...

[a_{n+m} a_{n+m+1}  a_{n+m+2} ... a_{n+2m}  ]

has determinant zero.

Write this determinant as D(n,n+2m).

Special case: D(n,n) = a_n.

Dodgson tells us D(0,2m) D(2m,2m-2) = D(0,2m-2) D(2,2m)


( D(1,2m-1)^2, etc.

Arrange these numbers in a square tableau:

...
D(0,0)
D(1,1)
D(2,2)
D(3,3)
D(4,4)
....




D(0,2)
D(1,3)
D(2,4)






D(0,4)

D(0,4) = (D(0,2)D(2,4) (D(1,3)^2)/D(2,2).

Try it for Fibonacci:

1
1
2
3
5
8
13
21
34


1
-1
1
-1
1
-1
1



0
0
0
0
0

You should imagine that there’s an extra row at the top consisting 

entirely of 1’s.

For Toplitz matrices, it’s a similar recurrence: just change the sign.



N


W
C
E



S

S = (C^2 ( WE)/N.

NS + WE = C^2.

This is more symmetrical

Try it for squares of Fibonacci numbers:


1
1
1
1
1

1
1
4
9
25
64
169


-3
7
-19
49
-129



-2
2
-2




0

Sometimes you encounter a singular submatrix:

1
1
1
1
1
1
1
1
1
1
1
1


10
6
3
1
0
0
1
3
6
10



6
3
1
0
0
1
3
6




1
1
?
?
1
1

You can always evaluate a question mark by working out the


determinant directly.  If you do this, you’ll find that those


question marks above really should be 1’s.

Conway and Guy and Sloane showed that 0’s always come in

disjoint square blocks, called windows, and they gave rules

for “working around windows”.  For details, see Sloane’s

A Handbook of Integer Sequences or Conway and Guy’s 

The Book of Numbers.

