Math 491, Problem Set \#6: Solutions

1. There is a unique polynomial of degree d such that $f(k)=2^{k}$ for $k=$ $0,1, \ldots, d$. What is $f(d+1)$ ? What is $f(-1)$ ?
Suppose $g(k)$ is a polynomial of degree $m \geq 1$, so that its sequence of $m$ th differences is constant. If we define $G(k)=g(k)+g(k-1)+$ $\ldots+g(1)$ for all $k \geq 1$, then the first differences of $G$ are the "zeroeth" differences of $g$, the second differences of $G$ are the first differences of $g$, and so on, so that the sequence of $m+1$ st difference of $G$ is constant, implying that $G(k)$ is given by a polynomial of degree $m+1$ in $k$. This last assertion is true for $g(k-1)+g(k-2)+\ldots+g(0)+1$ as well, since it differs from $G(k)$ by the substitution of $k-1$ for $k$ and the addition of the constant 1.
In particular, we see that if $f$ is a polynomial of degree $d-1$ with $f(k)=2^{k}$ for $0 \leq k \leq d-1$, then the sum $F(k)=f(k-1)+f(k-$ $2)+\ldots+f(0)+1$ defines a polynomial function of degree $d$, and it is easy to see that if $f$ satisfies the property that characterizes $f_{d-1}, F$ satisfies the property that characterizes $f_{d}$. Hence we have

$$
f_{d}(k)=f_{d-1}(k-1)+f_{d-1}(k-2)+\ldots+f_{d-1}(0)+1
$$

for all $k \geq 0$ (not just $0 \leq k \leq d$ ), with the proviso that in the case $k=0$, the only term on the right hand side is the 1 .
Putting $k=d+1$, we have $f_{d}(d+1)=f_{d-1}(d)+f_{d-1}(d-1)+\ldots+$ $f_{d-1}(0)+1=f_{d-1}(d)+2^{d-1}+\ldots+1+1=f^{d-1}(d)+2^{d}$. That is, the sequence $f_{0}(1), f_{1}(2), f_{2}(3), \ldots$, has the sequence $1,2,4, \ldots$ as its sequence of first differences, from which it follows (say by induction) that $f_{d-1}(d)=2^{d}-1$.
On the other hand, for each fixed $d$ the relation $f_{d}(k)-f_{d}(k-1)=$ $f_{d-1}(k-1)$ holds for all $k$, since it holds for all positive $k$ and since both sides of the equation are polynomials. Hence we have $f_{d}(0)-f_{d}(-1)=$ $f_{d-1}(-1)$. Rewriting this as $f_{d}(-1)=f_{d}(0)-f_{d-1}(-1)$ and using the fact that $f_{d}(0)=1$, we have $f_{d}(-1)=1-f_{d-1}(-1)$, from which it follows (say by induction) that $f_{d}(-1)=1$ when $d$ is even and 0 when $d$ is odd. (Or, if you prefer formulas, $f_{d}=\left(1+(-1)^{n}\right) / 2$.

Note that you don't need to have an explicit formula for $f_{d}(k)$ in order to solve this problem!

