
Math 491, Problem Set #4: Solutions

1. (a) Does there exist a polynomial p(t) of degree 3 such that the linear
operator p(T ) annihilates the sequence whose nth term (for n ≥ 0)
is 3n + 2n + 1n? Exhibit such a polynomial or explain why none
exists.

Since T − 3I annihilates 3n, and T − 2I annihilates 2n, and T − I
annihilates 1n, the linear operator (T − 3I)(T − 2I)(T − I) =
T 3 − 6T 2 + 11T − 6 annihilates 3n + 2n + 1n.

(b) Same as (a), but with “degree 3” replaced by “degree 4”.

Any linear operator of the form (T − cI)(T 3− 6T 2 + 11T − 6) will
do; e.g., with c = 0, we get T 4 − 6T 3 + 11T 2 − 6T .

(c) Same as (a), but with “degree 3” replaced by “degree 2”.

No. Suppose we have constants A,B,C such that AT 2 +BT +CI
annihilates the sequence whose nth term is f(n) = 3n + 2n + 1n.
That is, suppose Af(n+2)+Bf(n+1)+Cf(n) = 0 for all n ≥ 0.
Substituting n = 0, n = 1, and n = 2 into this equation we get
14A+6B+3C = 0, 36A+14B+6C = 0, and 98A+36B+14C = 0.
Since the determinant ∣∣∣∣∣∣∣

14 6 3
36 14 6
98 36 14

∣∣∣∣∣∣∣
is not equal to zero, the only solution to this linear system is
A = B = C = 0.

2. Let Fn be the nth Fibonacci number, as Wilf indexes them (with F0 =
F1 = 1, F2 = 2, etc.). Give a simple homogeneous linear recurrence
relation satisfied by the sequence whose nth term is...

(a) nFn:

This sequence is given by a formula of the form Anrn+Bnsn (since
Fn = Arn + Bsn), where r and s are the roots of t2 − t − 1 = 0.
So we need a polynomial which has r as a double root and s as a
double root. (t2 − t − 1)2 = t4 − 2t3 − t2 + 2t + 1 will certainly
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do. So, writing the nth term of the given sequence as fn, we have
fn+4 = 2fn+3 + fn+2 − 2fn+1 − fn.

Alternatively, we can use generating functions: If F0 + F1x +
F2x

2 + F3x
3 + . . . = 1/(1− x− x2), then, differentiating, we have

1F1+2F2x+3F3x
2+. . . = (1+2x)/(1−x−x2)2, and the occurrence

of (1− x− x2)2 = 1− 2x− x2 + 2x3 + x4 in the denominator tells
us that the sequence must satisfy the recurrence fn+4 = 2fn+3 +
fn+2 − 2fn+1 − fn.

(b) 1F1 + 2F2 + ...+ nFn:

If we apply the operator T−I to this sequence, we get the sequence
considered in part (a). So the sequence fn whose nth term is
1F1 + ...+ nFn is annihilated by the operator (T − I)(T 4− 2T 3−
T 2 + 2T + I) = T 5 − 3T 4 + T 3 + 3T 2 − T − I.

Alternatively, we can use generating functions, and multiply the
formal power series (1 + 2x)/(1− x− x2)2 (considered in the pre-
vious sub-problem) by 1 + x + x2 + . . . = 1/(1 − x). The co-
efficients of the resulting formal power series are easily seen to
be partial sums of exactly the desired kind. So the new denom-
inator is (1 − x)(1 − x − x2)2 = 1 − 3x + x2 + 3x3 − x4 − x5,
which tells us that the sequence must satisfy the recurrence fn+5 =
3fn+4 − fn+3 − 3fn+2 + fn+1 + fn.

(c) nF1 +(n−1)F2 + ...+2Fn−1 +Fn: This sum is the coefficient of xn

in the product of the formal power series F1x+F2x
2+...+Fnx

n+...
with the formal power series 1 + 2x+ 3x2 + ...+ nxn−1 + .... The
former is given by a formal power series with denominator 1−x−x2

and the latter is given by a formal power series with denominator
(1−x)2; when we multiply them, we get a formal power series with
denominator (1− x− x2)(1− x)2 = 1− 3x+ 2x2 + x3− x4, so the
sequence satisfies the recurrence fn+4 = 3fn+3−2fn+2−fn+1 +fn.

(d) Fn when n is odd, and 2n when n is even: We saw in class that the
Fibonacci numbers satisfy the recurrence fn+4 = 3fn+2 − fn. On
the other hand, the powers of two satisfy the recurrence fn+2 =
4fn. Since any multiple of T 4−3T 2+I annihilates the former, and
any multiple of T 2 − 4I annihilates the latter, an operator that
annihilates both sequences (while only looking two, four, or six
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terms earlier) is (T 4− 3T 2 + I)(T 2− 4I) = T 6− 7T 4 + 13T 2− 4I.
So fn+6 = 7fn+4 − 13fn+2 + 4fn.
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