Math 491, Problem Set \#4: Solutions

1. (a) Does there exist a polynomial $p(t)$ of degree 3 such that the linear operator $p(T)$ annihilates the sequence whose nth term (for $n \geq 0$) is $3^{n}+2^{n}+1^{n}$? Exhibit such a polynomial or explain why none exists.
Since $T-3 I$ annihilates 3^{n}, and $T-2 I$ annihilates 2^{n}, and $T-I$ annihilates 1^{n}, the linear operator $(T-3 I)(T-2 I)(T-I)=$ $T^{3}-6 T^{2}+11 T-6$ annihilates $3^{n}+2^{n}+1^{n}$.
(b) Same as (a), but with "degree 3" replaced by "degree 4".

Any linear operator of the form $(T-c I)\left(T^{3}-6 T^{2}+11 T-6\right)$ will do; e.g., with $c=0$, we get $T^{4}-6 T^{3}+11 T^{2}-6 T$.
(c) Same as (a), but with "degree 3" replaced by "degree 2".

No. Suppose we have constants A, B, C such that $A T^{2}+B T+C I$ annihilates the sequence whose nth term is $f(n)=3^{n}+2^{n}+1^{n}$. That is, suppose $A f(n+2)+B f(n+1)+C f(n)=0$ for all $n \geq 0$. Substituting $n=0, n=1$, and $n=2$ into this equation we get $14 A+6 B+3 C=0,36 A+14 B+6 C=0$, and $98 A+36 B+14 C=0$. Since the determinant

$$
\left|\begin{array}{rrr}
14 & 6 & 3 \\
36 & 14 & 6 \\
98 & 36 & 14
\end{array}\right|
$$

is not equal to zero, the only solution to this linear system is $A=B=C=0$.
2. Let F_{n} be the nth Fibonacci number, as Wilf indexes them (with $F_{0}=$ $F_{1}=1, F_{2}=2$, etc.). Give a simple homogeneous linear recurrence relation satisfied by the sequence whose nth term is...
(a) $n F_{n}$:

This sequence is given by a formula of the form $A n r^{n}+B n s^{n}$ (since $F_{n}=A r^{n}+B s^{n}$), where r and s are the roots of $t^{2}-t-1=0$. So we need a polynomial which has r as a double root and s as a double root. $\left(t^{2}-t-1\right)^{2}=t^{4}-2 t^{3}-t^{2}+2 t+1$ will certainly
do. So, writing the nth term of the given sequence as f_{n}, we have $f_{n+4}=2 f_{n+3}+f_{n+2}-2 f_{n+1}-f_{n}$.
Alternatively, we can use generating functions: If $F_{0}+F_{1} x+$ $F_{2} x^{2}+F_{3} x^{3}+\ldots=1 /\left(1-x-x^{2}\right)$, then, differentiating, we have $1 F_{1}+2 F_{2} x+3 F_{3} x^{2}+\ldots=(1+2 x) /\left(1-x-x^{2}\right)^{2}$, and the occurrence of $\left(1-x-x^{2}\right)^{2}=1-2 x-x^{2}+2 x^{3}+x^{4}$ in the denominator tells us that the sequence must satisfy the recurrence $f_{n+4}=2 f_{n+3}+$ $f_{n+2}-2 f_{n+1}-f_{n}$.
(b) $1 F_{1}+2 F_{2}+\ldots+n F_{n}$:

If we apply the operator $T-I$ to this sequence, we get the sequence considered in part (a). So the sequence f_{n} whose nth term is $1 F_{1}+\ldots+n F_{n}$ is annihilated by the operator $(T-I)\left(T^{4}-2 T^{3}-\right.$ $\left.T^{2}+2 T+I\right)=T^{5}-3 T^{4}+T^{3}+3 T^{2}-T-I$.
Alternatively, we can use generating functions, and multiply the formal power series $(1+2 x) /\left(1-x-x^{2}\right)^{2}$ (considered in the previous sub-problem) by $1+x+x^{2}+\ldots=1 /(1-x)$. The coefficients of the resulting formal power series are easily seen to be partial sums of exactly the desired kind. So the new denominator is $(1-x)\left(1-x-x^{2}\right)^{2}=1-3 x+x^{2}+3 x^{3}-x^{4}-x^{5}$, which tells us that the sequence must satisfy the recurrence $f_{n+5}=$ $3 f_{n+4}-f_{n+3}-3 f_{n+2}+f_{n+1}+f_{n}$.
(c) $n F_{1}+(n-1) F_{2}+\ldots+2 F_{n-1}+F_{n}$: This sum is the coefficient of x^{n} in the product of the formal power series $F_{1} x+F_{2} x^{2}+\ldots+F_{n} x^{n}+\ldots$ with the formal power series $1+2 x+3 x^{2}+\ldots+n x^{n-1}+\ldots$ The former is given by a formal power series with denominator $1-x-x^{2}$ and the latter is given by a formal power series with denominator $(1-x)^{2}$; when we multiply them, we get a formal power series with denominator $\left(1-x-x^{2}\right)(1-x)^{2}=1-3 x+2 x^{2}+x^{3}-x^{4}$, so the sequence satisfies the recurrence $f_{n+4}=3 f_{n+3}-2 f_{n+2}-f_{n+1}+f_{n}$.
(d) F_{n} when n is odd, and 2^{n} when n is even: We saw in class that the Fibonacci numbers satisfy the recurrence $f_{n+4}=3 f_{n+2}-f_{n}$. On the other hand, the powers of two satisfy the recurrence $f_{n+2}=$ $4 f_{n}$. Since any multiple of $T^{4}-3 T^{2}+I$ annihilates the former, and any multiple of $T^{2}-4 I$ annihilates the latter, an operator that annihilates both sequences (while only looking two, four, or six
terms earlier) is $\left(T^{4}-3 T^{2}+I\right)\left(T^{2}-4 I\right)=T^{6}-7 T^{4}+13 T^{2}-4 I$.
So $f_{n+6}=7 f_{n+4}-13 f_{n+2}+4 f_{n}$.

