
Math 491, Problem Set #20: Solutions

1. (from unpublished work of Douglas Zare) Let Gm,n be the directed graph
with vertex set {(i, j) ∈ Z × Z : 0 ≤ i ≤ m, 0 ≤ j ≤ n}, with an arc
from (i, j) to (i′, j′) iff (j′ − j, i′ − i) is (1, 0), (0, 1), or (1, 1).

(a) For any legal path P in Gm,n from (0, 0) to (m,n), define d(P ) as
the number of diagonal steps in P plus the number of upward steps
in P that are followed immediately by a rightward step. Show that
the number of paths P with d(P ) = k is exactly 2k

(
m
k

)(
n
k

)
.

Given such a path P , shade each of the k squares that either is
bisected by a diagonal step in P or is adjacent to two consecutive
steps in P of which the first is vertical and the second is horizontal.
No two of the shaded squares can be in the same row or column
of the square grid, so the shaded squares occupy k rows and k
columns. Moreover, if two squares are shaded, the one that is
to the right is also strictly higher. Conversely, given any k rows
and k columns in Gm,n, shade in the grid-cell that lies in the ith
selected row and the ith selected column for i going from 1 to
k. For each such shading, there are exactly 2k paths P in Gm,n

with those shaded squares. Specifically, for each shaded square we
may freely choose either to have P bisect the square with a single
diagonal step or to have P circumvent the square with a vertical
step followed by a horizontal step, and between two successive
shaded squares (or between (0, 0) and the first shaded square,
or between the last shaded square and (m,n)) include a run of
horizontal steps followed by a run of vertical steps. Each path is
accounted for exactly once by this reckoning, so the number of
paths P with d(P ) = k is 2k

(
m
k

)(
n
k

)
.

(b) Let M be the (n + 1)-by-(n + 1) matrix with rows and columns
indexed from 0 through n whose i, jth entry is the total number of
paths in Gi,j from (0, 0) to (i, j). Use the result of part (a) to find
the LDU decomposition of M . That is: find square matrices L,
D, U such that LDU = M , where L (resp. U) is a lower (resp.
upper) triangular matrix with 1’s on the diagonal and where D
is a diagonal matrix (whose diagonal entries are permitted to be
different). Use this in turn to compute det(M).
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Put Li,j =
(
i
j

)
, Ui,j =

(
j
i

)
, and Di,i = 2i with Di,j = 0 for i 6=

j. Then (LDU)i,j =
∑
k Li,kDk,kUk,j =

∑
k

(
i
k

)
2k
(
j
k

)
= Mi,j, so

LDU = M . Clearly det(L) = det(U) = 1 and det(D) = 1 × 2 ×
· · ·×2n = 2n(n+1)/2, so det(M) = det(L) det(D) det(U) = 2n(n+1)/2

as well.

(c) Interpret M as the Lindstrom matrix of some directed graph and
use this in turn to interpret det(M) as the number of perfect
matchings of some graph Hn. Be explicit about what Hn looks
like.

The relevant graph for the first part of the problem is just Gn,n

itself, with the points (0, j) (0 ≤ j ≤ n) serving as sources and
the points (i, n) (0 ≤ i ≤ n) serving as sinks. Note that one of
the sources coincides with the one of the sinks; these two must
be “joined” by a path of length 0 in any routing, and so may be
ignored by computational purposes (though conceptually they are
helpful inasmuch as they make the description of routings appear
more symmetrical). Each n-routing through this directed graph
corresponds to a perfect matching of the deleted double of Gn,n,
in which every vertex v gets replaced by two vertices v− and v+

deemed adjacent to one another, every directed edge v → w gets
replaced by an undirected edge joining v+ and w−, and the vertex
v− (resp. v+) is deleted whenever v is a source (resp. sink). If we
do this to Gn,n we obtain a bipartite planar graph made up out of
trapezoids; if we rectify the graph so that the trapezoids become
squares, we find that the graph Hn is just the Aztec diamond
graph of order n. Thus we have shown that the number of perfect
matchings of the Aztec diamond graph is 2n(n+1)/2.

2. Fix positive integers a, b,m, n with n > m and a + n ≤ b, and let
M(a + 1),M(a + 2), . . . ,M(b + n − 1) be arbitrary m-by-m matrices.
Show that the n-by-n matrix whose i, jth entry (for 1 ≤ i, j ≤ n) is the
upper left entry of the product matrix M(a+i)M(a+i+1) · · ·M(b+j−1)
has determinant zero.

Create a directed graph with vertices of the form (i, j) for a + 1 ≤
i ≤ b + n and 1 ≤ j ≤ m; for all i, j, j′ with a + 1 ≤ i ≤ b + n − 1
and 1 ≤ j, j′ ≤ m, create an edge from (i, j) to (i + 1, j′) with weight
equal to the j, j′ entry of the matrix M(i). Then the upper left entry
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of M(a+ i)M(a+ i+ 1) · · ·M(b+ j−1) is the sum of the weights of all
the paths from (a + i, 1) to (b + j, 1). Hence, by Lindstrom’s lemma,
the n-by-n determinant we are considering is equal to the number of
n-routings in the digraph that join (a+1, 1), . . . , (a+n, 1), to (b+1, 1),
. . . , (b+ n, 1). But all n of these paths would have to contain distinct
vertices of the form (a + n, k) for some k, which is impossible since
there are only m < n vertices of this form.
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