Math 491, Problem Set \#11 (Solutions)

1. Let c_{n} be the number of domino tilings of a 3-by-2n cylinder, obtained by gluing together the left and right sides (of length 3) of a 3-by-2n rectangle. Express the generating function $c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots$ as a rational function of x.
Where two squares meet side by side, record a 0 if they are covered by a single (horizontal) domino and a 1 otherwise. Then there are eight possible patterns of 0's and 1's as one reads down, which we treat as numbers between 0 through 7 via binary encoding. Then the domino tilings of the 3 -by- $2 n$ cylinder correspond to circular words of length $2 n$ in the symbols 0 through 7 , where the allowed transitions are summarized in the following matrix (with rows and columns indexed consecutively from 0 through 7):

$$
M=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

That is, in Maple-ese,

M := matrix(8,8, [
$0,1,0,0,0,0,0,0$,
$0,0,0,0,0,0,1,0$,
$0,0,0,0,0,1,0,0$,
$0,0,0,0,1,0,0,1$,
$0,0,0,1,0,0,0,0$,
$0,0,1,0,0,0,0,0$,
$0,1,0,0,0,0,0,1$,
$1,1,0,0,1,0,0,0]$);

Maple, in response to the command charpoly (M, t), tells us that the characteristic polynomial of this matrix is $\operatorname{det}(t I-M)=t^{8}-3 t^{6}-$ $2 t^{5}+2 t^{4}+4 t^{3}+t^{2}-2 t-1$, so the twisted version is $Q(x)=\operatorname{det}(I-$ $x M)=1-3 x^{2}-2 x^{3}+2 x^{4}+4 x^{5}+x^{6}-2 x^{7}-x^{8}$, which factors as $(1-x)^{2}(1+x)^{2}\left(1-x-x^{2}\right)\left(1+x+x^{2}\right)$. Therefore $\frac{-x Q^{\prime}(x)}{Q(x)}=\frac{2 x(1-x)}{(1-x)^{2}}-$ $\frac{2 x(1+x)}{(1+x)^{2}}+\frac{x+2 x^{2}}{1-x-x^{2}}+\frac{-x-2 x^{2}}{1+x+x^{2}}=\frac{6 x^{2}+6 x^{3}-2 x^{4}-14 x^{5}-8 x^{6}}{(1-x)(1+x)\left(1-x-x^{2}\right)\left(1+x+x^{2}\right)}$.

