
Math 491, Problem Set #10 (Solutions)

1. (a) Use transfer matrices to find the generating function for the num-
ber of domino-tilings of the 4-by-n grid-graph.

We can represent each tiling by a word of length n+ 1, whose ith
symbol tells us which rows of the tiling contain horizontal dominos
in the i−1st and ith columns. (Here we count the leftmost column
as the first.) Specifically, we can use the letters N, T, M, B, O, and
A so signify that there are No horizontal dominos spanning those
two columns, or two in the Top two rows, or two in the Middle
two rows, or two in the Bottom two rows, or two in the Outer two
rows, or two in All four rows. Our transfer matrix then looks like

M =



1 1 0 1 1 1
1 0 0 1 0 0
0 0 0 0 1 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0


(Here rows and columns correspond to the symbols N, T, M, B,
O, and A, in that order.) We are interested in words of length
n + 1 that begin and end with the symbol N, corresponding to
the fact that no domino is permitted to span the zeroeth and first
columns nor the nth and n + 1st boundary, since in both cases
such a boundary would partly fall outside the region being tiled;
that is, we are interested in the upper-left entry of the nth power
of M :

M2 =



5 2 1 2 1 1
2 2 0 1 1 1
1 0 1 0 0 0
2 1 0 2 1 1
1 1 0 1 2 1
1 1 0 1 1 1


,M3 =



11 7 1 7 6 5
7 3 1 4 2 2
1 1 0 1 2 1
7 4 1 3 2 2
6 2 2 2 1 1
5 2 1 2 1 1


,

etc.
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The characteristic polynomial of M is t6−t5−6t4+6t2+t−1, so the
sequence whose nth term is the number of domino tilings of the 2-
by-n rectangle (call this number an) satisfies the recurrence an+6−
an+5−6an+4 + 6an+2 +an+1−an. So, to reconstruct the sequence,
it suffices to know any six consecutive terms and then apply the
recurrence. We already know from the preceding paragraph that
a1 = 1, a2 = 5, and a3 = 11. We could find a4 through a6

by raising M to the 4th, 5th, and 6th powers respectively (and
taking the upper left entries of these matrices), but here’s another
way: Since the matrix M is non-singular, we can multiply the
relation M6 −M5 − 6M4 + 6M2 +M − I = 0 by any positive or
negative power of M , and by taking the upper-left-hand entry of
the resulting equation, we find that if we extend the definition of an
for n ≤ 0 to be the upper left entry of Mn, the a-sequence satisfies
the aforementioned recurrence relation for all integer values of n
(not just positive ones). We already know that

M0 = I =



1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

Using Maple (or working by hand), it is not hard to compute that

M−1 =



0 0 0 0 0 1
0 0 0 1 0 −1
0 0 0 0 1 −1
0 1 0 0 0 −1
0 0 1 0 0 0
1 −1 −1 −1 0 1


whence

M−2 = (M−1)(M−1)



1 −1 −1 −1 0 1
−1 2 1 1 0 −2
−1 1 2 1 0 −1
−1 1 1 2 0 −2

0 0 0 0 1 −1
1 −2 −1 −2 −1 5


.
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Therefore the sequence of an’s, commencing with a−2, begins 1, 0, 1,
1, 5, 11, and (by the recurrence relation) continues 36, 95, 281, 781, . . ..

We know that the generating function for the an’s, when multi-
plied by the denominator 1− x− 6x2 + 6x4 + x5− x6 must give a
polynomial of degree at most 5. Multiplying 1 + x+ 5x2 + 11x3 +
36x4 + 95x5 + 281x6 + 781x7 + . . . by 1− x− 6x2 + 6x4 + x5− x6,
we get 1− 2x2 + x4. Hence

A(x) =
∞∑
n=0

anx
n =

1− 2x2 + x4

1− x− 6x2 + 6x4 + x5 − x6

=
(1− x2)2

(1− x2)(1− x− 5x2 − x3 + x4)

=
1− x2

1− x− 5x2 − x3 + x4
.

Note that the denominator is palindromic: the sequence of coeffi-
cients 1,−1,−5,−1, 1 reads the same backwards as forwards. This
means that some of you may have gotten the correct answer by
an incorrect method (by misapplying the relationship between re-
currence relations on the one hand and denominator polynomials
on the other).

(b) Use transfer matrices to find the generating function for the num-
ber of irreducible domino-tilings of the 4-by-n grid-graph. (Here
an irreducible tiling is one that cannot be decomposed into tilings
of two smaller rectangles of height 4.)

Now we look at words of length n + 1 that have the symbol N
at the beginning and at the end but nowhere in between. Let us
leave aside the words NN and NAN for the time being. Then a
sequence of length n + 1 that begins and ends with N but has N
nowhere in between cannot have an A in the middle anywhere,
since that A would have to be immediately preceded and immedi-
ately succeeded by an N , contradicting irreducibility. Therefore,
if we truncate the first and last symbols, we are looking at words
of length n− 1 that don’t contain N or A. We can count them by
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taking the (n− 2)nd power of the modified transfer matrix

N =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


obtained by removing the first and last row and column of M ,
with rows and columns listed in the order T,M,B,O. The boldface
entries are the ones we want to sum (note that neither the first
nor last symbol of the new shortened word can be M since we are
supposed to be able to stick an N at the beginning and the end).
Since N2 = I, it is easy to check that (for n ≥ 2) the sum of the
boldface entries of Nn−2 (that is, the entries that are in neither
the second row nor the second column) is 3 when n is even and
2 when n is odd. This still leaves the exceptional words NN and
NAN (n = 2 and n = 1, respectively), each of which corresponds
to a unique irreducible tiling. So the generating function is (x +
x2)+(3x2 +2x3 +3x4+2x5 + . . . = x+4x2 +2x3 +3x4 +2x5 + . . .,
or B(x) = (x+ 4x2 + x3 − x4)/(1− x2).

(Note that in this case, as in the cases of rectangles of height 2,
3, or 4, the number of irreducible tilings does not grow with the
width of the rectangle. However, this is atypical. Indeed, for all
k > 4, the number of irreducible tilings of height k and width n
does not stay bounded as n gets large.)

It’s worth noting that the degree of the numerator of B(x) exceeds
the degree of the denominator by 2. This corresponds to the fact
that the recurrence relation bn+2 − bn = 0 given to us by the
denominator 1− x2 fails to kick in until n > 2.

(c) Check your work by deriving your answer to (a) from your answer
to (b) and vice versa.

A tiling of the sort counted by A(x) is equivalent to a sequence
(possibly empty) of tilings of the sort counted by B(x) (the irre-
ducible components of the first tiling) and has x-weight equal to
the product of the weights of the components, our general princi-
ple about repetition gives us A(x) = 1/(1− B(x)). Going in one
direction, this gives us

A(x) = (1− x2)/((1− x2)− (x+ 4x2 + x3 − x4))
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= (1− x2)/(1− x− 5x2 − x3 + x4)

and in the other,

B(x) = 1− (1− x− 5x2 − x3 + x4)/(1− x2) = ((1− x2)− (1− x− 5x2 − x3 + x4))/(1− x2)

= (x+ 4x2 + x3 − x4))/(1− x2).

2. (a) Find a generating function for the number of spanning trees of a
2-by-n grid-graph.

Let tn be the number of spanning Trees of the 2-by-n grid (so
that t1 = 1 and t2 = 4) and let un be the number of Unconnected
subgraphs of the 2-by-n grid which aren’t spanning trees but which
would become spanning trees if the rightmost vertical edge was
added in (so that u1 = 1 and u2 = 3). We will find a joint
recurrence for the numbers tn and un.

Let’s give labels to the three rightmost edges of the 2-by-n grid-
graph: a is the upper rightmost edge, b is the lower rightmost
edge, and c is the rightmost vertical edge. A spanning tree of the
2-by-n grid (let’s call it a T -graph of order n for short) is one of
the following:

– a T -graph of order n− 1 with the edges a and b added;

– a T -graph of order n− 1 with the edges a and c added;

– a T -graph of order n− 1 with the edges b and c added; or

– a U -graph of order n− 1 with the edges a, b and c added.

Hence tn = 3tn−1 + un−1. Likewise, a U -graph of order n is one of
the following:

– a T -graph of order n− 1 with the edge a added;

– a T -graph of order n− 1 with the edge b added; or

– a U -graph of order n− 1 with the edges a and b added.

Hence un = 2tn−1 + un−1.

I will demonstrate two ways of continuing the solution from this
point.

Method I: Define generating functions T (x) =
∑
n≥1 tnx

n and
U(x) =

∑
n≥1 unx

n. Multiplying the relation tn+1 = 3tn + un by
xn+1 and summing over n ≥ 1 gives T (x)− x = 3xT (x) + xU(x).
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Likewise, multiplying the relation un+1 = 2tn + un by xn+1 and
summing over n ≥ 0 gives U(x) − x = 2xT (x) + xU(x). The
former gives us (1− 3x)T (x)− xU(x) = x and the latter gives us
2xT (x)− (1− x)U(x) = −x. Solving, we get

T (x) = x/(1− 4x+ x2) = x+ 4x2 + 15x3 + 56x4 + . . .

and

U(x) = (x− x2)/(1− 4x+ x2) = x+ 3x2 + 11x3 + 41x4 + . . . .

Method II: Our joint recurrence gives us(
tn
un

)
=

(
3 1
2 1

)(
tn−1

un−1

)
.

Hence both sequences will satisfy the linear recurrence relation as-

sociated with the characteristic polynomial of the matrix

(
3 1
2 1

)
,

namely, (λ − 3)(λ − 1) − (1)(2) = λ2 − 4λ + 1. (Here I am us-
ing λ instead of t as the variable in the characteristic polyno-
mial, so you won’t confuse it with tn.) That is, we must have
tn+2−4tn+1 + tn = 0 for all n ≥ 1. Indeed, we can make this equa-
tion hold for all n ≥ 0 if we adopt the convention t0 = 0, since
we already know that t1 = 1 and t2 = 4. Therefore, T (x) must
be of the form p(x)/(1 − 4x + x2) where p(x) is a polynomial of
degree less than 2. To find p(x), it suffices to know three consecu-
tive values of tn. But we already know t0, t1, and t2. Multiplying
T (x) = 0 + x + 4x2 + . . . by 1 − x + 4x2 gives 0 + x + 0x2 + . . .,
so p(x) = x. and T (x) = x/(1− 4x+ x2).

(b) These numbers turned up in a homework problem you did earlier
in the course. Which one was it?

These are the same numbers that turned up in problem 1 of assign-
ment 5, as the coefficients of the generating function B(x); there,
the coefficients counted domino tilings of 3-by-(2n+ 1) rectangles
from which a corner has been removed. However, our generating
function x/(1 − 4x + x2) includes an extra factor of x in the nu-
merator. So we have shown that the number of spanning trees of a
2-by-n grid equals the number of domino tilings of a 3-by-(2n−1)
rectangles from which a corner has been removed.
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(c) Is this a coincidence, or is there a connection between the two
problems? That is, can you find a bijection between the two sorts
of combinatorial objects?

We need to find a bijection between spanning trees of the 2-by-n
grid graph and perfect matchings of the 3 − by − (2n − 1) grid
from which a corner has been removed. Enlarge the former by a
factor of two and superimpose the two pictures, so that the four
corner-vertices of the 2-by-n grid coincide with the corner-vertices
(three present, one missing) of the 3-by-(2n−1) grid. Let v be the
vertex of the 2-by-n grid that corresponds to the missing vertex of
the 3-by-(2n− 1) grid. Let T be some spanning tree in the 2-by-n
grid. Then, for every vertex w 6= v of the 2-by-n grid, there is
a unique path w → w′ → . . . → v from w to v in T . Let a be
the vertex of the 3-by-(2n − 1) grid that coincides with w, and
let b be the vertex of the 3-by-(2n − 1) grid that coincides with
the midpoint of the edge joining w and w′. In this way, each w
determines a pair a, b. (You’ll want to draw some picture of this,
if you haven’t started drawing them already.)

It turns out that for any given T , the pairs a, b that arise in this
way are all disjoint from one another, and that the set of associated
edges of the 3-by-(2n−1) grid can be extended in exactly one way
to a perfect matching M of the 3-by-(2n−1) grid. Moreover, each
perfect matching M arises in this way from a unique spanning tree
T .
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