
Solutions to Final Exam

1. Three married couples are seated together at the counter at Monty’s Blue
Plate Diner, occupying six consecutive seats. How many arrangements are
there with no wife sitting next to her own husband? We do not require men
and women to alternate. For full credit, you must use the inclusion-exclusion
method.

Solution: If we ignore the constraint about who can sit next to whom,
the number of arrangements of the six people is 6!. Let Ai be the set of
arrangements with couple i sitting together (i = 1, 2, 3). |Ai| = 2 · 5!: there
are 2 ways to order couple i (man on the right or woman on the right) and
then there are 5! ways to order couple i with the other 4 individuals (think of
couple i as one entity and the remaining 4 people as individuals). Likewise
|Ai ∩Aj| = 2 · 2 · 4! and |Ai ∩Aj ∩Ak| = 2 · 2 · 2 · 3!. Hence, using inclusion-
exclusion, we see that the number of ways to arrange three married couples so
that no wife sits next to her own husband is 6!−3 ·(2 ·5!)+3 ·(22 ·4!)−23 ·3! =
720 − 720 + 288 − 48 = 240.

2. Use the method of characteristic equations to solve the linear recurrence
hn = 4hn−1 − 4hn−2 with initial conditions h0 = 1, h1 = 4.

Solution: The characteristic equation is x2 = 4x − 4, or x2 − 4x + 4 = 0,
which has 2 as a double root. Hence the solution can be expressed in the
form hn = A2n + Bn2n. Thus 1 = h0 = (A)(20) + (B)(0)(20) = A and
4 = h1 = (A)(21) + (B)(1)(21) = 2A + 2B, which yields A = 1 and B = 1.
Therefore hn = 2n + n2n = (n + 1)2n.

3. Solve the non-homogeneous linear recurrrence hn = 3hn−1 + 1 with initial
condition h0 = 0.

Solution: The general solution to the corresponding homogeneous re-
currence h′

n = 3h′
n−1 is h′

n = A3n. To find a particular solution to the non-
homogeneous recurrence, we can guess an answer of the same general form as
the non-homogeneous term 1; that is, we guess hn = B for some constant B.
Plugging this into hn = 3hn−1 +1 we get B = 3B+1 which requires B = −1

2
.

This corresponds to the particular solution hn = −1
2
. So the solution we seek

is of the form hn = h′
n − 1

2
= A3n − 1

2
. Since 0 = h0 = A30 − 1

2
= A − 1

2
, we

get A = 1
2
. Hence hn = 1

2
· 3n − 1

2
.
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Alternative solution: The non-homogeneous term 1 satisfies a linear recur-
rence with characteristic polynomial (x− 1). Since the homogeneous version
of the original recurrence has characteristic polynomial x−3, we can multiply
the two and conclude that the original sequence hn satisfies a linear recur-
rence with characteristic polynomial (x − 1)(x − 3). It follows that we can
write hn = A+B3n for suitable constants A, B. Putting 0 = h0 = A+B and
1 = h1 = A + 3B (where h1 is computed via the original non-homogeneous
recurrence) and solving this linear system, we get A = −1

2
and B = 1

2
. Hence

hn = −1
2

+ 1
2
· 3n.

4. For n > 0, let an be the number of ways to tile a 1-by-n strip with 1-by-2
tiles and 1-by-3 tiles (so that a0 = 1, a1 = 0, and a2 = 1). Find a third-
order recurrence relation satisfied by an, and write the generating function
f(x) = a0 + a1x + a2x

2 + . . . as a rational function of x. Do not solve for
an.

Solution: For n ≥ 3, a tiling of the 1-by-n strip can begin with either a
1-by-2 tile (in which case the number of ways to complete the tiling is an−2)
or a 1-by-3 tile (in which case the number of ways to complete the tiling is
an−3). Hence an = an−2 + an−3 for all n ≥ 3, which is a recurrence with
characteristic polynomial x3 − x − 1. It follows that a0 + a1x + a2x

2 + . . .
can be written in the form (A + Bx + Cx2)/(1− x2 − x3), where we get the
denominator by taking the coefficients of x3 − x − 1 and applying them to
the powers of x in increasing rather than decreasing order. There are two
ways to solve for A, B, C:

Method 1: Multiply both sides of

(A + Bx + Cx2)/(1 − x2 − x3) = a0 + a1x + a2x
2 + . . .

by 1 − x2 − x3, obtaining

A + Bx + Cx2 = (1 − x2 − x3)(a0 + a1x + a2x
2 + . . .).

Equating coefficients of successive powers of x, we get A = a0 = 1, B = a1 =
0, and C = a2 − a0 = 0, so the generating function is 1/(1 − x2 − x3).

Method 2: Multiply both sides of the recurrence an = an−2 + an−3 by xn

and sum over all n ≥ 3. This yields

f(x) − a0 − a1x − a2x
2 = x2[f(x) − a0] + x3[f(x)].
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Plugging in a0 = 1, a1 = 0, and a2 = 1, we get

f(x) − 1 − x2 = x2[f(x) − 1] + x3[f(x)],

which becomes (1 − x2 − x3)f(x) = 1, so f(x) = 1/(1 − x2 − x3).

5. For n > 0, let an be the number of length-n strings of 1’s, 2’s, 3’s and
4’s in which no two 4’s appear consecutively. Find a second-order recurrence
relation satisfied by an. Do not solve for an.

Solution: An allowed string of length n can begin with a 1, in which case
there are an−1 ways to finish it; or it can begin with a 2, in which case there
are an−1 ways to finish it; or it can begin with a 3, in which case there are an−1

ways to finish it; or it can begin with a 4, in which case the next symbol must
be a 1, 2, or 3 (3 choices), and then there are an−2 ways to finish the string,
giving 3an−2 strings of length n that start with a 4. Hence the total number
of possibilities satisfies an = an−1 + an−1 + an−1 + 3an−2 = 3an−1 + 3an−2.

6. (a) Find the polynomial p(n) of degree 2 whose difference table is

1 3 11 25 45 ...

2 8 14 20 ...

6 6 6 ...

(where the leftmost entry in the top row is p(0)). Express your answer in the
form An2 + Bn + C, and check it for n = 0, 1, 2, and 3.

(b) Find a formula for the sum
∑n

k=0 p(k). Express your final answer in
the form An3 + Bn2 + Cn + D, and check it for n = 0, 1, 2, and 3.

Solution:
(a) Reading down the left diagonal, we see that p(n) can be written as

1 ·
(

n
0

)
+ 2 ·

(
n
1

)
+ 6 ·

(
n
2

)
= 1 + 2n + 3n(n − 1) = 3n2 − n + 1.

(b) Using those same coefficients, we get 1 ·
(

n+1
1

)
+ 2 ·

(
n+1

2

)
+ 6 ·

(
n+1

3

)
.

This becomes (n + 1) + (n + 1)n + (n + 1)n(n − 1) = n3 + n2 + n + 1.

7. Let hn be the number of length-n strings of 1’s, 2’s, and 3’s in which
1’s occur an even number of times and 2’s occur an even number of times.
Find an exact formula for the exponential generating function of the sequence
h0, h1, h2, . . ., and use it to find an exact formula for hn (valid for all n ≥ 0).
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Solution: The exponential generating function for strings consisting of an
even number of 1’s (and nothing else) is (ex + e−x)/2. The exponential gen-
erating function for strings consisting of an even number of 2’s (and nothing
else) is (ex + e−x)/2. The exponential generating function for strings consist-
ing of an arbitrary number of 3’s is ex. Hence the exponential generating func-
tion for strings consisting of an even number 1’s, an even number of 2’s, and
an arbitrary numbers of 3’s is (ex+e−x)/2·(ex+e−x)/2·ex, or 1

4
(e3x+2ex+e−x).

The coefficient of xn/n! in this expansion is 1
4
(3n + 2 · 1n + (−1)n), so the

number of such strings is is 1
4
(3n + 2 + (−1)n).

8. Express S(n, n− 1) (for n ≥ 1) as a polynomial in n, and prove that your
formula is valid by using the combinatorial interpretation of Stirling numbers
of the second kind.

Solution: S(n, n− 1) is the number of ways to divide n objects into n− 1
disjoint subsets. Exactly one of these subsets must be of size 2, with the
rest being of size 1. Hence, such a division of the n objects is equivalent to
choosing 2 of the n objects to form a set of size 2 (and letting the other n−2

elements form sets of size 1 by themselves). Therefore S(n, n − 1) =
(

n
2

)
=

n(n − 1)/2.

9. A baton is divided into 2n + 1 cylindrical bands of equal length (n ≥ 1).
In how many different ways can the 2n + 1 bands be colored if 3 colors are
available, assuming that no two adjacent bands may be given the same color?
(Two colorings count as the same if one of them can be converted into the
other by turning the baton around.)

Solution: Here the group acting on the set of colorings is just the 2-
element group consisting of the identity element (don’t turn the baton) and a
non-identity element (do turn the baton). By Burnside’s Lemma, the answer
can be written as 1

2
(A + B), where A is the number of of allowed colorings

that are fixed by the identity operation (that is, the total number of allowed
colorings), and B is the number of of allowed colorings that are fixed by the
turn operation. A equals 3 · 22n, since (starting at one end of the baton)
there are 3 possible colors to use at the end, and at each subsequent band
there are exactly 2 possible colors to use (namely, the two colors that differ
from the one just used). On the other hand, B equals 3 · 2n, since (starting
from the middle of the baton) there are 3 possible colors to use, and at each
subsequent band there are exactly 2 possible colors to use (where you must
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make sure to use the same color for each band and for its mate on the other
side of the baton). So the answer is 3

2
(4n + 2n).

10. Use Burnside’s Lemma to count the number of circular 6-permutations
of the multiset {2 · R, 2 · W, 2 · B}.

Solution: Here the group acting on the set of colorings is the 6-element
group consisting of rotations by multiple of 60 degrees. By Burnside’s Lemma,
the answer is 1

6
(A + 2B + 2C + D), where A is the number of colorings that

are invariant under 0 degree rotation, B is both the number of colorings that
are invariant under 60 degree clockwise rotation and the number of colorings
that are invariant under 60 degree counterclockwise rotation, C is both the
number of colorings that are invariant under 120 degree clockwise rotation
and the number of colorings that are invariant under 120 degree counter-
clockwise rotation, and D is the number of colorings that are invariant under
180 degree rotation. We have A = 6!/2!2!2! = 90 (these are just ordinary
permutations of the multiset), B = 0 (the only way a circular 6-permutation
involving R’s, W’s, and B’s can be invariant under 60 degree rotation is if all
six letters are the same), C = 0 (for the same sort of reason as B = 0, but
more complicated: a circular 6-permutation involving R’s, W’s, and B’s can
be invariant under 120 degree rotation only if either some color occurs six
times or two of the colors occur three times each, contradicting our require-
ment that each of the three colors occurs twice), and D = 3! = 6 (there are 3!
ways of assigning the three colors to the three pairs of diametrically opposite
positions in the circular 6-permutation, and each of these corresponds to a
way of arranging two R’s two B’s, and two W’s). So the number of orbits,
i.e., the number of 6-permutations, is 1

6
(90 + 6) = 16.
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