Math 475, Problem Set \#9: Answers

A. Brualdi, chapter 7, problem 28, parts (b), (c), and (e).
(b) $1-x+x^{2}-\ldots+(-1)^{n} x^{n}+\ldots$ is a geometric series with initial term 1 and ratio $-x$, so the sum is $1 /(1-(-x))=1 /(1+x)$. (Note that this is the special case $c=-1$ of the result from part (a).)
(c) $\binom{\alpha}{0}+\left(-\binom{\alpha}{1}\right) x+\binom{\alpha}{2} x^{2}+\ldots+\left((-1)^{n}\binom{\alpha}{n}\right) x^{n}+\ldots=\binom{\alpha}{0}+\binom{\alpha}{1}(-x)+$ $\binom{\alpha}{2}(-x)^{2}+\ldots+\binom{\alpha}{n}(-x)^{n}+\ldots$, which we recognize as the generating function in the second Example on page 236, but with x replaced by $-x$. So the sum is $(1-x)^{\alpha}$.
(e) $1-\frac{1}{1!} x+\frac{1}{2!} x^{2}-\ldots+(-1)^{n} \frac{1}{n!} x^{n}+\ldots=1+\frac{1}{1!}(-x)+\frac{1}{2!}(-x)^{2}+$ $\ldots+\frac{1}{n!}(-x)^{n}+\ldots=e^{-x}$.
B. Brualdi, chapter 7, problem 29, parts (b), (d), and (e). (Note for part (b) that 0 is a multiple of 3.)
(b) $\left(1+x^{3}+x^{6}+\ldots\right)^{4}=\left(1 /\left(1-x^{3}\right)\right)^{4}=1 /\left(1-x^{3}\right)^{4}$.
(d) $\left(x+x^{3}+x^{11}\right)\left(x^{2}+x^{4}+x^{5}\right)\left(1+x+x^{2}+\ldots\right)\left(1+x+x^{2}+\ldots\right)=$ $\left(x+x^{3}+x^{11}\right)\left(x^{2}+x^{4}+x^{5}\right) /(1-x)^{2}$.
(e) $\left(x^{10}+x^{11}+x^{12}+\ldots\right)^{4}=\left(x^{10} /(1-x)\right)^{4}=x^{40} /(1-x)^{4}$.
C. Brualdi, chapter 7, problem 30, part (d).

Let $g(x)=\sum_{n=0}^{\infty} h_{n} x^{n}$. Summing the equation $h_{n} x^{n}=8 h_{n-1} x^{n}-$ $16 h_{n-2} x^{n}$ for all $n \geq 2$, we get $g(x)-h_{0}-h_{1} x=8\left(g(x)-h_{0}\right)-16 g(x)$, i.e., $g(x)+1=8 x(g(x)+1)-16 x^{2} g(x)$. This yields $\left(1-8 x+16 x^{2}\right) g(x)=$ $-1+8 x$, so $g(x)=(-1+8 x) /\left(1-8 x+16 x^{2}\right)$. Expanding by partial fractions, we obtain $A /(1-4 x)+B /(1-4 x)^{2}$. Multiplying by $(1-4 x)^{2}$, we get $-1+8 x=A(1-4 x)+B$. The values of A and B that make the LHS and RHS identically equal are $A=-2$ and $B=1$. So $g(x)=$ $-2 /(1-4 x)+1 /(1-4 x)^{2}$. The coefficient of x^{n} in $-2 /(1-4 x)$ is $(-2)(4)^{n}$ and the coefficient of x^{n} in $1 /(1-4 x)^{2}$ is $(n+1)(4)^{n}$ (using formula (7.47) with $r=4$ and $k=2)$. So $h_{n}=(-2)(4)^{n}+(n+1)(4)^{n}=$ $(-2+n+1) 4^{n}=(n-1) 4^{n}$.
Note that this agrees with the answer from Assignment 8, problem E.
D. Let f_{n} be the Fibonacci sequence as defined at the bottom of page 211. In this problem you will use the method of section 7.5 to solve the nonhomogeneous recurrence relation $h_{n}=h_{n-1}+f_{n}$ with the initial condition $h_{0}=0$.
(a) Let $g(x)=\sum_{n=0}^{\infty} h_{n} x^{n}$, and show that $g(x)=\frac{x}{(1-x)\left(1-x-x^{2}\right)}$.

Summing the equations $h_{n} x^{n}=h_{n-1} x^{n}+f_{n} x^{n}$ with n going from 1 to infinity, and using the fact that $\sum_{n=0}^{\infty} f_{n} x^{n}=x /\left(1-x-x^{2}\right)$, we get $g(x)-h_{0}=x g(x)+x /\left(1-x-x^{2}\right)$. Since $h_{0}=0$, this becomes $(1-x) g(x)=\frac{x}{1-x-x^{2}}$, so $g(x)=\frac{x}{(1-x)\left(1-x-x^{2}\right)}$.
(b) By doing a partial fraction expansion of $g(x)$ of the form $g(x)=$ $A /(1-x)+(B+C x) /\left(1-x-x^{2}\right)$, derive a formula for h_{n} in terms of Fibonacci numbers.
We need to pick A, B, C so that $A\left(1-x-x^{2}\right)+(B+C x)(1-x)$ simplifies to $0+1 x+0 x^{2}$; this means $A+B=0,-A-B+C=1$, and $-A-C=0$, and we can easily solve this system of linear equations, obtaining $A=-1, B=1$, and $C=1$. So $g(x)=$ $-1 /(1-x)+(1+x) /\left(1-x-x^{2}\right)=-1 /(1-x)+1 /(1-x-$ $\left.x^{2}\right)+x /\left(1-x-x^{2}\right)$. The coefficient of x^{n} in $-1 /(1-x)$ is -1 , the coefficient of x^{n} in $1 /\left(1-x-x^{2}\right)$ is f_{n+1}, and the coefficient of x^{n} in $x /\left(1-x-x^{2}\right)$ is f_{n}. Hence $h_{n}=-1+f_{n+1}+f_{n}$.
(Remark: We saw in the chapter why the coefficient of x^{n} in $x /\left(1-x-x^{2}\right)$ is f_{n}. To see why the coefficient of x^{n} in $1 /\left(1-x-x^{2}\right)$ is f_{n+1}, note that this is the same power series as $x /\left(1-x-x^{2}\right)$, but where every exponent is shifted down by 1 . That is, we have $x /\left(1-x-x^{-} x^{2}\right)=x+x^{2}+2 x^{3}+3 x^{4}+\ldots$ and $1 /\left(1-x-x^{-} x^{2}\right)=$ $1+x+2 x^{2}+3 x^{3}+\ldots$. So the coefficient of x^{n} in $1 /\left(1-x-x^{2}\right)$ is equal to the coefficient of x^{n+1} in $x /\left(1-x-x^{2}\right)$, which is equal to f_{n+1}.)
(c) Check your answer by comparing with formula (7.8) in Brualdi.

Since $h_{0}=0$ and $h_{n}=h_{n-1}+f_{n}$, we have $h_{n}=f_{1}+f_{2}+\ldots+f_{n}$. Since $f_{0}=0$, this equals $f_{0}+f_{1}+f_{2}+\ldots+f_{n}$, which is s_{n}. Brualdi showed that $s_{n}=-1+f_{n+2}$. But this can be written as $-1+f_{n+1}+f_{n}$, which agrees with what we saw in (b).
(The same method that we used here can also be applied to problem

A from assignment 8, removing the element of guesswork.)
E. Brualdi, chapter 7, problem 32.

First solution: Follow Brualdi's hint. Start with $1+x+x^{2}+\ldots=$ $1 /(1-x)$. Multiply by $x: x+x^{2}+x^{3}+\ldots=x /(1-x)$. Differentiate: $1+2 x+3 x^{2}+\ldots=1 /(1-x)^{2}$. Multiply by $x: x+2 x^{2}+3 x^{3}+\ldots=$ $x /(1-x)^{2}$. Differentiate: $1+4 x+9 x^{2}+\ldots=(1+x) /(1-x)^{3}$. Multiply by $x: x+4 x^{2}+9 x^{3}+\ldots=\left(x+x^{2}\right) /(1-x)^{3}$. Differentiate: $1+8 x+27 x^{2}+\ldots=\left(1+4 x+x^{2}\right) /(1-x)^{4}$. Multiply by x one last time: $0+x+8 x^{2}+27 x^{3}+\ldots=\left(x+4 x^{2}+x^{3}\right) /(1-x)^{4}$.
Second solution: The sequence $h_{n}=n^{3}$ satisfies the fourth-order recurrence relation $h_{n}-4 h_{n-1}+6 h_{n-2}-4 h_{n-3}+h_{n-4}$ with characteristic polynomial $r(x)=x^{4}-4 x^{3}+6 x^{2}-4 x+1=(x-1)^{4}$. By Theorem 7.5.1 and the formula in the middle of page 233, the generating function $g(x)$ for the sequence h_{n} must be of the form $p(x) / q(x)$ where $p(x)$ is a polynomial of degree <4 where $q(x)=x^{4} r(1 / x)=$ $1-4 x+6 x^{2}-4 x^{3}+x^{4}$. Write $p(x)=A+B x+C x^{2}+D x^{3}$. We must have $p(x)=g(x)\left(1-4 x+6 x^{2}-4 x^{3}+x^{4}\right)$, i.e., $\left.A+B x+C x^{2}+D x^{3}+0 x^{4}+\ldots\right)=$ $\left(h_{0}+h_{1} x+h_{2} x^{2}+h_{3} x^{3}+h_{4} x^{4}+\ldots\right)\left(1-4 x+6 x^{2}-4 x^{3}+x^{4}\right)$. Equating terms, we get $A=h_{0}=0^{3}=0, B=h_{1}-4 h_{0}=(1)^{3}-4(0)^{3}=1, C=$ $h_{2}-4 h_{1}+6 h_{0}=(2)^{3}-4(1)^{3}+6(0)^{3}=4$, and $D=h_{3}-4 h_{2}+6 h_{1}-4 h_{0}=$ $(3)^{3}-4(2)^{3}+6(1)^{3}-4(0)^{3}=1$. Hence $g(x)=\left(x+4 x^{2}+x^{3}\right) /(1-x)^{4}$.
Remark: As a way of checking your answer, you can use the division discussed in class, to see if $x+4 x^{2}+x^{3}$ divided by $1-4 x+6 x^{2}-4 x^{3}+x^{4}$ really goes $0+1 x+8 x^{2}+27 x^{3}+\ldots$. Or, better still, try multiplication: $\left(1-4 x+6 x^{2}-4 x^{3}+x^{4}\right)\left(0+1 x+8 x^{2}+27 x^{3}+64 x^{4}+125 x^{5}+\ldots\right)=$ $(1 \cdot 0)+(1 \cdot 1-4 \cdot 0) x+(1 \cdot 8-4 \cdot 1+6 \cdot 0) x^{2}+(1 \cdot 27-4 \cdot 8+6 \cdot 1-4 \cdot 0) x^{3}+(1 \cdot$ $64-4 \cdot 27+6 \cdot 8-4 \cdot 1+1 \cdot 0) x^{4}+(1 \cdot 125-4 \cdot 64+6 \cdot 27-4 \cdot 8+1 \cdot 1) x^{5}+\ldots=$ $0+1 x+4 x^{2}+1 x^{3}+0 x^{4}+0 x^{5}+\ldots$, which checks.

