Math 475, Problem Set #9: Answers

- A. Brualdi, chapter 7, problem 28, parts (b), (c), and (e).
 - (b) $1 x + x^2 \ldots + (-1)^n x^n + \ldots$ is a geometric series with initial term 1 and ratio -x, so the sum is 1/(1 (-x)) = 1/(1 + x). (Note that this is the special case c = -1 of the result from part (a).)
 - (c) $\binom{\alpha}{0} + (-\binom{\alpha}{1})x + \binom{\alpha}{2}x^2 + \ldots + ((-1)^n\binom{\alpha}{n})x^n + \ldots = \binom{\alpha}{0} + \binom{\alpha}{1}(-x) + \binom{\alpha}{2}(-x)^2 + \ldots + \binom{\alpha}{n}(-x)^n + \ldots$, which we recognize as the generating function in the second Example on page 236, but with x replaced by -x. So the sum is $(1-x)^{\alpha}$.
 - (e) $1 \frac{1}{1!}x + \frac{1}{2!}x^2 \dots + (-1)^n \frac{1}{n!}x^n + \dots = 1 + \frac{1}{1!}(-x) + \frac{1}{2!}(-x)^2 + \dots + \frac{1}{n!}(-x)^n + \dots = e^{-x}.$
- B. Brualdi, chapter 7, problem 29, parts (b), (d), and (e). (Note for part (b) that 0 is a multiple of 3.)
 - (b) $(1 + x^3 + x^6 + ...)^4 = (1/(1 x^3))^4 = 1/(1 x^3)^4.$
 - (d) $(x + x^3 + x^{11})(x^2 + x^4 + x^5)(1 + x + x^2 + ...)(1 + x + x^2 + ...) = (x + x^3 + x^{11})(x^2 + x^4 + x^5)/(1 x)^2.$
 - (e) $(x^{10} + x^{11} + x^{12} + \ldots)^4 = (x^{10}/(1-x))^4 = x^{40}/(1-x)^4.$
- C. Brualdi, chapter 7, problem 30, part (d).

Let $g(x) = \sum_{n=0}^{\infty} h_n x^n$. Summing the equation $h_n x^n = 8h_{n-1}x^n - 16h_{n-2}x^n$ for all $n \ge 2$, we get $g(x) - h_0 - h_1x = 8(g(x) - h_0) - 16g(x)$, i.e., $g(x) + 1 = 8x(g(x) + 1) - 16x^2g(x)$. This yields $(1 - 8x + 16x^2)g(x) = -1 + 8x$, so $g(x) = (-1 + 8x)/(1 - 8x + 16x^2)$. Expanding by partial fractions, we obtain $A/(1 - 4x) + B/(1 - 4x)^2$. Multiplying by $(1 - 4x)^2$, we get -1 + 8x = A(1 - 4x) + B. The values of A and B that make the LHS and RHS identically equal are A = -2 and B = 1. So $g(x) = -2/(1 - 4x) + 1/(1 - 4x)^2$. The coefficient of x^n in -2/(1 - 4x) is $(-2)(4)^n$ and the coefficient of x^n in $1/(1 - 4x)^2$ is $(n + 1)(4)^n$ (using formula (7.47) with r = 4 and k = 2). So $h_n = (-2)(4)^n + (n+1)(4)^n = (-2 + n + 1)4^n = (n - 1)4^n$.

Note that this agrees with the answer from Assignment 8, problem E.

- D. Let f_n be the Fibonacci sequence as defined at the bottom of page 211. In this problem you will use the method of section 7.5 to solve the nonhomogeneous recurrence relation $h_n = h_{n-1} + f_n$ with the initial condition $h_0 = 0$.
 - (a) Let $g(x) = \sum_{n=0}^{\infty} h_n x^n$, and show that $g(x) = \frac{x}{(1-x)(1-x-x^2)}$. Summing the equations $h_n x^n = h_{n-1}x^n + f_n x^n$ with n going from 1 to infinity, and using the fact that $\sum_{n=0}^{\infty} f_n x^n = x/(1-x-x^2)$, we get $g(x) - h_0 = xg(x) + x/(1-x-x^2)$. Since $h_0 = 0$, this becomes $(1-x)g(x) = \frac{x}{1-x-x^2}$, so $g(x) = \frac{x}{(1-x)(1-x-x^2)}$.
 - (b) By doing a partial fraction expansion of g(x) of the form $g(x) = A/(1-x) + (B+Cx)/(1-x-x^2)$, derive a formula for h_n in terms of Fibonacci numbers.

We need to pick A, B, C so that $A(1 - x - x^2) + (B + Cx)(1 - x)$ simplifies to $0 + 1x + 0x^2$; this means A + B = 0, -A - B + C = 1, and -A - C = 0, and we can easily solve this system of linear equations, obtaining A = -1, B = 1, and C = 1. So $g(x) = -1/(1 - x) + (1 + x)/(1 - x - x^2) = -1/(1 - x) + 1/(1 - x - x^2) + x/(1 - x - x^2)$. The coefficient of x^n in -1/(1 - x) is -1, the coefficient of x^n in $1/(1 - x - x^2)$ is f_{n+1} , and the coefficient of x^n in $x/(1 - x - x^2)$ is f_n . Hence $h_n = -1 + f_{n+1} + f_n$.

(Remark: We saw in the chapter why the coefficient of x^n in $x/(1-x-x^2)$ is f_n . To see why the coefficient of x^n in $1/(1-x-x^2)$ is f_{n+1} , note that this is the same power series as $x/(1-x-x^2)$, but where every exponent is shifted down by 1. That is, we have $x/(1-x-x^-x^2) = x+x^2+2x^3+3x^4+\ldots$ and $1/(1-x-x^-x^2) = 1+x+2x^2+3x^3+\ldots$ So the coefficient of x^n in $1/(1-x-x^2)$ is equal to the coefficient of x^{n+1} in $x/(1-x-x^2)$, which is equal to f_{n+1} .)

(c) Check your answer by comparing with formula (7.8) in Brualdi. Since $h_0 = 0$ and $h_n = h_{n-1} + f_n$, we have $h_n = f_1 + f_2 + \ldots + f_n$. Since $f_0 = 0$, this equals $f_0 + f_1 + f_2 + \ldots + f_n$, which is s_n . Brualdi showed that $s_n = -1 + f_{n+2}$. But this can be written as $-1 + f_{n+1} + f_n$, which agrees with what we saw in (b).

(The same method that we used here can also be applied to problem

A from assignment 8, removing the element of guesswork.)

E. Brualdi, chapter 7, problem 32.

First solution: Follow Brualdi's hint. Start with $1 + x + x^2 + \ldots = 1/(1-x)$. Multiply by $x: x + x^2 + x^3 + \ldots = x/(1-x)$. Differentiate: $1 + 2x + 3x^2 + \ldots = 1/(1-x)^2$. Multiply by $x: x + 2x^2 + 3x^3 + \ldots = x/(1-x)^2$. Differentiate: $1 + 4x + 9x^2 + \ldots = (1+x)/(1-x)^3$. Multiply by $x: x + 4x^2 + 9x^3 + \ldots = (x + x^2)/(1-x)^3$. Differentiate: $1 + 8x + 27x^2 + \ldots = (1 + 4x + x^2)/(1-x)^4$. Multiply by x one last time: $0 + x + 8x^2 + 27x^3 + \ldots = (x + 4x^2 + x^3)/(1-x)^4$.

Second solution: The sequence $h_n = n^3$ satisfies the fourth-order recurrence relation $h_n - 4h_{n-1} + 6h_{n-2} - 4h_{n-3} + h_{n-4}$ with characteristic polynomial $r(x) = x^4 - 4x^3 + 6x^2 - 4x + 1 = (x - 1)^4$. By Theorem 7.5.1 and the formula in the middle of page 233, the generating function g(x) for the sequence h_n must be of the form p(x)/q(x) where p(x) is a polynomial of degree < 4 where $q(x) = x^4r(1/x) = 1-4x+6x^2-4x^3+x^4$. Write $p(x) = A+Bx+Cx^2+Dx^3$. We must have $p(x) = g(x)(1-4x+6x^2-4x^3+x^4)$, i.e., $A+Bx+Cx^2+Dx^3+0x^4+\ldots) = (h_0+h_1x+h_2x^2+h_3x^3+h_4x^4+\ldots)(1-4x+6x^2-4x^3+x^4)$. Equating terms, we get $A = h_0 = 0^3 = 0$, $B = h_1 - 4h_0 = (1)^3 - 4(0)^3 = 1$, $C = h_2 - 4h_1 + 6h_0 = (2)^3 - 4(1)^3 + 6(0)^3 = 4$, and $D = h_3 - 4h_2 + 6h_1 - 4h_0 = (3)^3 - 4(2)^3 + 6(1)^3 - 4(0)^3 = 1$. Hence $g(x) = (x + 4x^2 + x^3)/(1-x)^4$.

Remark: As a way of checking your answer, you can use the division discussed in class, to see if $x + 4x^2 + x^3$ divided by $1 - 4x + 6x^2 - 4x^3 + x^4$ really goes $0 + 1x + 8x^2 + 27x^3 + \ldots$ Or, better still, try multiplication: $(1 - 4x + 6x^2 - 4x^3 + x^4)(0 + 1x + 8x^2 + 27x^3 + 64x^4 + 125x^5 + \ldots) = (1 \cdot 0) + (1 \cdot 1 - 4 \cdot 0)x + (1 \cdot 8 - 4 \cdot 1 + 6 \cdot 0)x^2 + (1 \cdot 27 - 4 \cdot 8 + 6 \cdot 1 - 4 \cdot 0)x^3 + (1 \cdot 64 - 4 \cdot 27 + 6 \cdot 8 - 4 \cdot 1 + 1 \cdot 0)x^4 + (1 \cdot 125 - 4 \cdot 64 + 6 \cdot 27 - 4 \cdot 8 + 1 \cdot 1)x^5 + \ldots = 0 + 1x + 4x^2 + 1x^3 + 0x^4 + 0x^5 + \ldots$, which checks.