
Math 475, Problem Set #8: Answers

A. Brualdi, problem 1, parts (a), (b), and (d).

(a): As n goes from 1 to 6, the sum (call it hn) takes on the values
1, 3, 8, 21, 55, and 144; we recognize these as Fibonacci numbers,
so we conjecture that hn = f2n. To prove this by induction, we first
note (base case) that for n = 1, h1 = f1 = 1 = f2 = f2n, and that
for larger n, if we assume (induction hypothesis) that hn = f2n, then
hn+1 = hn + f2n+1 = f2n + f2n+1 = f2n+2 = f2(n+1), as desired.

(b): As n goes from 0 to 6, the sum (call it hn) takes on the values 0,
1, 4, 12, 33, 88, and 232; we recognize these as 1 less than Fibonacci
numbers, so we conjecture that hn = f2n+1 − 1. To prove this by
induction, we first note (base case) that for n = 0, h0 = f0 = 0 = 1−1 =
f1 − 1, and that for larger n, if we assume (induction hypothesis) that
hn = f2n+1−1, then hn+1 = hn+f2(n+1) = f2n+1−1+f2n+2) = f2n+3−1,
as desired.

(d): As n goes from 0 to 6, the sum (call it hn) takes on the values 0,
1, 2, 6, 15, 40, and 104; we recognize these as products of consecutive
Fibonacci numbers, so we conjecture that hn = fnfn+1. To prove this
by induction, we first note (base case) that for n = 0, h0 = f 2

0 = 0 =
(0)(1) = f0f1, and that for larger n, if we assume (induction hypothesis)
that hn = fnfn+1, then hn+1 = hn + (fn+1)

2 = fnfn+1 + (fn+1)
2 =

fn+1(fn + fn+1) = fn+1fn+2, as desired.

B. Brualdi, problem 9.

First solution: We imitate the example from the chapter, on page 223.
Let n ≥ 2. If the first square is blue, or the first square is white,
then the coloring can be completed in hn−1 ways. If the first square
is red, then the second square must be colored blue or white, and
after that the coloring can be completed in hn−2 ways. Hence hn =
hn−1 + hn−1 + 2hn−2 = 2hn−1 + 2hn−2. The characteristic equation is
x2 − 2x− 2, and the characteristic roots are (2±

√
4 + 8)/2 = 1±

√
3,

so the general formula for hn is of the form ‘ c1(1+
√

3)n + c2(1−
√

3)n.

To solve for c1 and c2, we use the initial conditions h0 = 1 and h1 = 3:

1 = c1 + c2,
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3 = c1(1 +
√

3) + c2(1−
√

3).

This system of linear equations has the solution c1 = 1
2

+ 1
3

√
3, c2 =

1
2
− 1

3

√
3. So

hn = (
1

2
+

1

3

√
3)(1 +

√
3)n + (

1

2
− 1

3

√
3)(1−

√
3)n.

Second solution: We will show that this is the same problem as the
Example on page 223 of the text, in a colorful disguise! Given a length-
n string of a’s, b’s, and c’s in which no two a’s appear consecutively,
we can create a correspond coloring of the 1-by-n chessboard in which
(reading from left to right) each a corresponds to a red square, each b
corresponds to a white square, and each c corresponds to a blue square.
The result is a coloring in which no two squares that are colored red are
adjacent. Furthermore, given any such coloring, we can represent each
red square by an a, each white square by a b, and each blue square by
a c; the result is a string of a’s, b’s, and c’s in which no two a’s appear
consecutively. Thus we have established a one-to-one correspondence
between the words of length n discussed on page 223 and the colorings
discussed in problem 7. It follows that the two sets are of the same size.
That is, the number of permitted colorings of the 1-by-n chessboard
equals the number of permitted words of length n, which (see the middle

of page 224) is equal to 2+
√

3
2
√

3
(1 +

√
3)n + −2+

√
3

2
√

3
(1−

√
3)n.

C. Solve the recurrence relation hn = nhn−1 + n − 1, (n ≥ 1) with the
initial value h0 = 0. It is not enough to guess the pattern; you must
prove it using induction.

As n goes from 0 to 6, hn takes on the values 0, 0, 1, 5, 23, 119, and
719; we recognize these as 1 less than the factorial numbers, so we
conjecture that hn = n! − 1. To prove this by induction, we first note
(base case) that for n = 0, h0 = 0 = 1− 1 = 0!− 1, and that for larger
n, if we assume (induction hypothesis) that hn = n! − 1, then hn+1 =
(n+1)hn+n = (n+1)(n!−1)+n = (n+1)n!−(n+1)+n = (n+1)!−1,
as desired.

Note that the recurrence is a linear recurrence but that it does not have
constant coefficients; hence the methods of sections 7.2 and beyond do
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not apply. That is why we had to resort to the method of section 7.1:
guessing the answer, and then proving it by induction. If you guessed
the right answer, but gave a specious justification saying things like
“the characteristic polynomial is x2 − n”, you will get f

¯
ewer points

than if you guessed the right answer and simply said “I don’t know
how to prove this.”

(Note: even if you can’t guess the answer to a problem like this, you
can still get partial credit for saying things that show some knowl-
edge or insight, such as “The coefficient of hn−1 on the right-hand side
isn’t a constant, so the methods we learned in section 7.3 and in class
don’t apply.” However, if you write “the characteristic polynomial is
x2−nx+n− 1,” then you’ve misunderstood an important point. This
linear recurrence doesn’t have a characteristic polynomial. A charac-
teristic polynomial must have constant coefficients; that is, it must be
an equation in x alone. We can’t have n’s floating around.)

D. Brualdi, problem 14. (Use the method given in the book.)

The characteristic equation x3 − x2 − 9x + 9 = 0 has roots 1, 3, and
−3, so the formula for hn is of the form hn = c1 + c23

n + c3(−3)n. To
solve for c1, c2, and c3, we use the initial conditions:

0 = h0 = c1 + c2 + c3,

1 = h1 = c1 + 3c2 − 3c3,

2 = h2 = c1 + 9c2 + 9c3.

If we subtract the first equation from each of the other two, we get

1 = 2c2 − 4c3,

2 = 8c2 + 8c3.

If we subtract 4 times the first new equation from the second new
equation, we get

−2 = 24c3.

So c3 = −1/12. Plugging this back into either of the equations that
involve only c2 and c3, we can solve for c2, obtaining c2 = 1/3. Plugging
these two values back into the first equation, we get c1 = −1/4. Hence
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hn = (−1/4) + (1/3)3n − (1/12)(−3)n. It’s extremely easy to make
mistakes in these calculations, so it’s wise to check this by plugging in
small values of n.

E. Brualdi, problem 15. (Use the method given in the book.)

The characteristic equation x2 − 8x + 16 = 0 has 4 as a double root,
so the formula for hn is of the form hn = c14

n + c2n4n. To solve for c1

and c2, we use the initial conditions:

−1 = h0 = c1

0 = h1 = 4c1 + 4c2.

The first equation gives c1 = −1, and plugging this into the second
equation gives c2 = 1. Hence hn = −4n + n4n.

F. Brualdi, problem 26. (Use the method given in the book.)

First, let me show the method you’re not supposed to use (namely,
the method I demonstrated in class), because in this problem I asked
you to use Brualdi’s method. The characteristic equation of the homo-
geneous recurrence is x2 − 6x + 9 = 0. The sequence of nonhomoge-
neous correction terms bn = 2n, satisfies the homogeneous recurrence
bn − 2bn−1 + bn−2 = 0; the characteristic equation of this recurrence
is x2 − 2x + 1. Therefore, by the theorem discussed in class, the se-
quence hn has characteristic equation (x2 − 6x + 9)(x2 − 2x + 1) = 0,
which has 1 as a double root and 3 as a double root. Therefore the
formula for hn is of the form hn = c1 + c2n + c33

n + c4n3n. To
solve for c1, c2, c3, and c4, we need h0, h1, h2, and h3. The first
two are given to us by the initial conditions, we determine the other
two by the recurrence: h2 = 6h1 − 9h0 + 4 = 6(0) − 9(1) + 4 = −5,
h3 = 6h2 − 9h1 + 6 = 6(−5) − 9(0) + 6 = −24. Now we can set up a
system of linear equations in the unknown coefficients c1, c2, c3, c4:

1 = h0 = c1 + c3,

0 = h1 = c1 + c2 + 3c3 + 3c4,

−5 = h2 = c1 + 2c2 + 9c3 + 18c4,

−24 = h3 = c1 + 3c2 + 27c3 + 81c4.
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Solving, we get c1 = 3
2
, c2 = 1

2
, c3 = −1

2
, c4 = −1

6
. So hn = 3

2
+ 1

2
n −

1
2
3n − 1

6
n3n.

Secondly, let’s do a hybrid solution to the problem, where our ability
to guess a particular solution is informed by our understanding of the
method discussed in class: Since the characteristic polynomial of the
homogeneous recurrence is x2−6x+9 = (x−3)2, the general solution to
the homogeneous recurrence is of the form c13

n +c2n3n. Since we know
(from the preceding solution) that there is a formula for hn as a linear
combination of the sequences 1n, n1n, 3n, and n3n, we guess that we can
build a particular solution to the non-homogeneous recurrence by using
the first two sequences as building blocks (since the last two are already
appearing in the general solution to the homogeneous second-order re-
currence). So, we guess that we can find a particular solution hn to the
original non-homogeneous recurrence, with hn a linear combination of
1n and n1n, that is, with hn a linear function of n. Write hn = a + bn.
Plugging this into the recurrence hn − 6hn−1 + 9hn−2 = 2n, we get
(a+bn)−6(a+b(n−1))+9(a+b(n−2)) = 2n or (4a−12b)+(4b)n = 2n.
Since this must be true for all n, we have 4a− 12b = 0 and 4b = 2, so
that b = 1/2 and a = 3/2. So the general solution to the original non-
homogeneous recurrence is given by hn = 3

2
+ 1

2
n + c13

n + c2n3n. Now
we can set up a system of linear equations in the unknown coefficients
c1, c2:

1 = h0 = 3/2 + 0 + c1 + 0,

0 = h1 = 3/2 + 1/2 + 3c1 + 3c2.

Solving, we get c1 = −1
2
, c2 = −1

6
. So hn = 3

2
+ 1

2
n− 1

2
3n − 1

6
n3n.

Thirdly, here is the solution I’m sure Brualdi had in mind (and which
I wanted you to rediscover in this assignment). Observe that the non-
homogeneous part of the equation, +2n, is very similar to the non-
homogeneous part of the equation given in the Example on page 230,
−4n. Since the trick in that problem was to guess that there is a
particular solution of the form hn = rn + s, we should try the same
thing here, writing hn = a + bn. Now proceed as in the previous
paragraph.
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