
Math 475, Problem Set #7: Answers

A. Let n be a positive integer ≥ 6. How many different ways are there of
rolling n dice so that each of the numbers 1,2,...,6 occurs at least once?
(Regard the dice as being distinguishable from one another.)

Let Ai be the set of outcomes with i not appearing. (i = 1, 2, 3, 4, 5, 6)
|Ai| = 5n since there are five choices for each of the n dice, with i taken
out. Similarly, |Ai∩Aj| = 4n, |Ai∩Aj∩Ak| = 3n, |Ai∩Aj∩Ak∩Al| = 2n,
|Ai∩Aj∩Ak∩Al∩Am| = 1. So the number of ways of rolling n different
dice so that each of the numbers 1, 2, 3, 4, 5, 6 occurs at least once is
N(n) = 6n − 6 · 5n +

(
6
2

)
· 4n −

(
6
3

)
· 3n +

(
6
4

)
· 2n − 6.

Ask a check, note that N(6) = 720 = 6!. This makes sense, since the
only way to achieve all six possible numbers in just six rolls is if all
six numbers are distinct; that is, the six rolls form a permutation of
{1, 2, 3, 4, 5, 6}, of which there are 6!.

B. Four married couples are seated around a circular table. How many
arrangements are there if no wife sits next to her own husband? (Ar-
rangements that differ only by rotation are to be regarded as identical.)
We do not require men and women to alternate.

Let Ai be the set of arrangements with couple i sitting together. (i =
1, 2, 3, 4). |Ai| = 2 · 6!: place husband i to the left or right of wife i and
permute the remaining 6 people. |Ai ∩Aj| = 2 · 2 · 5!. This is because,
if we think of couple i as a single entity and couple j as a single entity,
and leave the remaining 4 as is, then the number of configurations of
these 6 objects is 5!, and the number of ways couple i can be ordered
is 2, as is the number of ways that couple j can be ordered. Similarly,
|Ai ∩Aj ∩Ak| = 2 · 2 · 2 · 4!, |Ai ∩Aj ∩Ak ∩Al| = 2 · 2 · 2 · 2 · 3!. Hence,
using inclusion-exclusion, the number of arrangements of four married
couples so that no wife sits next to her own husband is 7!− 4 · (2 · 6!)+
6 · (22 · 5!) − 4 · (23 · 4!) + 24 · 3!. Note: If we require men and women
to alternate around the table, this becomes a much harder problem!

C. Given finite sets A1, A2, ..., An, let B be the set of all x that belong to at
least two of the Ai’s. (For instance, if n = 3 with A1 = {T, H, I, S},



A2 = {I, S}, and A3 = {I, T}, then B = {S, I, T}.) By experimenting
with small values of n (or by peeking ahead to part D), find a plausible
general formula for the size of B in terms of the sizes |Ai|, |Ai ∩ Aj|,
|Ai ∩ Aj ∩ Ak|, etc. To get you started: when n = 3,

|B| = |A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3| − 2|A1 ∩ A2 ∩ A3|.

|B| =
∑
i<j

|Ai ∩ Aj|

− 2
∑

i<j<k

|Ai ∩ Aj ∩ Ak| (more)

+ 3
∑

i<j<k<l

|Ai ∩ Aj ∩ Ak ∩ Al|
...

+ (−1)n(n− 1) |A1 ∩ A2 ∩ ... ∩ An|.

D. Prove that for all integers k ≥ 2,(
k

2

)
− 2

(
k

3

)
+ 3

(
k

4

)
− ... + (−1)k(k − 1)

(
k

k

)
= 1.

Binomial theorem proof: Starting from the identity(
k

0

)
+

(
k

1

)
x +

(
k

2

)
x2 +

(
k

3

)
x3 + ... = (1 + x)k,

we can subtract
(

k
0

)
= 1 from both sides, divide by x, and differentiate,

obtaining(
k

2

)
+ 2

(
k

3

)
x + 3

(
k

4

)
x2 + ... =

xk(1 + x)k−1 − (1 + x)k + 1

x2
.

Substituting x = −1 now yields the desired result.



Nicer proof: Using the identity i
(

k
i

)
= k

(
k−1
i−1

)
, we get

2

(
k

2

)
− 3

(
k

3

)
+ 4

(
k

4

)
− ... = k

(
k − 1

1

)
− k

(
k − 1

2

)
+ ...

= k

[(
k − 1

1

)
−
(
k − 1

2

)
+ ...

]

= k

[(
k − 1

0

)]
= k.

If we subtract from this the known identity(
k

2

)
−
(
k

3

)
+

(
k

4

)
− ... =

(
k

1

)
−
(
k

0

)
= k − 1,

we get the desired result.

Proof by Pascal’s relation: We have
(

k
2

)
−2

(
k
3

)
+3

(
k
4

)
−...+(−1)k−1(k−

2)
(

k
k−1

)
+(−1)k(k−1)

(
k
k

)
= (

(
k−1
1

)
+
(

k−1
2

)
−2(

(
k−1
2

)
+
(

k−1
3

)
)+3(

(
k−1
3

)
+(

k−1
4

)
) − . . . + (−1)k−1(k − 2)(

(
k−1
k−2

)
+
(

k−1
k−1

)
) + (−1)k(k − 1)(

(
k−1
k−1

)
) =(

k−1
1

)
−
(

k−1
2

)
+
(

k−1
3

)
+ . . . + (−1)k

(
k−1
k−1

)
=
(

k−1
0

)
= 1.

Combinatorial proof (included for the sake of diehard fans of the com-
binatorial method of proof; all others beware!): From among k people
we are to choose a committee of any (positive) number of people. The
committee must be chaired by a person who is not the least compe-
tent person on the committee. Thus, the committee must have at
least two members, and for all i from 2 to k, the number of ways of
choosing an i-member committee and a chairperson is (i− 1)

(
k
i

)
. Call

such a committee-with-chairperson positive if it has an even number
of members, and negative otherwise. We must show that the number
of positive committees-with-chairperson is 1 greater than the number
of negative committees-with-chairperson. We do this by pairing up
even committees with odd committees, with one even committee left
unpaired, as follows. Call the most competent of the k people Al, and
the least competent person Zeke. Note that Zeke can never be chair-
man. If anyone other than Al is chairing the committee, then we can



“switch” Al (that is, put him on the committee if he is off it, and take
him off if he is on it), obtaining a committee of the opposite type. If
on the other hand Al is chairing the committee, then we can switch
Zeke (that is, put him on the committee if he is off it, and take him off
if he is on it), obtaining a committee of the opposite type, unless the
committee consists of just Al and Zeke (for in this case, removing Zeke
would give rise to a 1-person committee, chaired by its only and hence
least competent member). This two-person committee consisting of Al
and Zeke is a positive committee. Every other committee is paired up
with a committee of the opposite type. This proves the result.

E. Prove your formula from part C. (Hint: You will probably find the result
of part D useful.)

If an element x belongs to 0 or 1 of the sets Ai, then it clearly makes
no contribution to the right hand side. On the other hand, suppose x
belongs to k of the sets Ai with 2 ≤ k ≤ n. Then it contributes +1 via
each of

(
k
2

)
terms of the form |Ai∩Aj|, −2 via each of

(
k
3

)
terms of the

form |Ai ∩ Aj ∩ Ak|, and so on, giving a total contribution of(
k

2

)
− 2

(
k

3

)
+ 3

(
k

4

)
− ... + (−1)k(k − 1)

(
k

k

)
= 1,

as required.

F. Use the formula from part C to obtain a solution to problem 15c in
Brualdi.

Let Ai denote the set of ways for the 7 gentlemen’s hat to be returned
such that the ith gentleman gets his own hat back. Then the number
of ways for two or more gentlemen to get their hats back is exactly |B|.
Applying the formula, we get

|B| =

(
7

2

)
5!− 2

(
7

3

)
4! + 3

(
7

4

)
3!− 4

(
7

5

)
2! + 5

(
7

6

)
1!− 6

(
7

7

)
0!.

It is easy to check that both this and the answer given in the back of
Brualdi are numerically equal to 1331.


