
Math 475, Problem Set #6: Solutions

A. (a) For each point (a, b) with a, b non-negative integers satisfying a+b ≤
8, count the paths from (0,0) to (a, b) where the legal steps from (i, j)
are to (i + 2, j), (i, j + 2), and (i + 1, j + 1).

I’ll do this in the first quadrant using i and j as x- and y-coordinates
(though you could use the i and j as row-index and column-index;
you’d get different pictures but the same numbers).

1
0 4
1 0 10
0 3 0 16
1 0 6 0 19
0 2 0 7 0 16
1 0 3 0 6 0 10
0 1 0 2 0 3 0 4
1 0 1 0 1 0 1 0 1

(b) Compute the coefficients of (x2 + xy + y2)n for n = 0, 1, 2, 3, 4.

(x2 + xy + y2)0 = 1, (x2 + xy + y2)1 = x2 + xy + y2, (x2 + xy + y2)2 =
x4 + 2x3y + 3x2y2 + 2xy3 + y4, (x2 + xy + y2)3 = x6 + 3x5y + 6x4y2 +
7x3y3 + 6x2y4 + 3xy5 + y6, and (x2 + xy + y2)4 = x8 + 4x7y + 10x6y2 +
16x5y3 + 19x4y4 + 16x3y5 + 10x2y6 + 4xy7 + y8.

(c) Based on parts (a) and (b), formulate a precise conjecture of the
form “for all non-negative integers a and b, the number of paths from
(0, 0) to (a, b) is equal to the coefficient of . . . in the polynomial . . . ”.

The number of paths from (0, 0) to (a, b) is equal to the coefficient of
xayb in (x2 +xy +y2)(a+b)/2. (This assumes that a+ b is even; if a+ b is
odd, the number of paths from (0, 0) to (a, b) is zero.) You can think of
the three terms of x2 + xy + y2 as representing the three possible steps
you’re allowed to take: x2 = x2y0 corresponds to moving 2 steps to the
right, xy = x1y1 corresponds to moving 1 step to the right and 1 step
up, and y2 = x0y2 corresponds to moving 2 steps upward. The terms
in the expansion of (x2 + xy + y2)m correspond to all the places (a, b)



you can get to using m steps of the allowed kinds, and the coefficient
of xayb in this expansion is the number of ways to get there.

B. Chapter 5, problem 12.

Algebraic proof: Rewriting the expression as(
n

0

)(
n

n

)
−
(
n

1

)(
n

n− 1

)
+

(
n

2

)(
n

n− 2

)
− ... + (−1)n

(
n

n

)(
n

0

)
,

we see that it is the coefficient of xn in the product of(
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But by applying the binomial theorem to the two factors, we see that
this polynomial is equal to (x− 1)n(x + 1)n = (x2 − 1)n. All the terms
in this sum are of even degree, so if n is odd, the coefficient of xn in
the polynomial vanishes. On the other hand, if n is even (say n = 2k),
then, setting y = x2, we see that the coefficient of xn in (x2−1)n is the

same as the coefficient of yn/2 in (y − 1)n, which is (−1)n/2
(
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)
.

(Remark: Even if you didn’t find this, you could have still gotten partial
credit if you noticed that, when n is odd, the terms of the alternating

sum of the squares of the binomial coefficients cancel in pairs:
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Combinatorial proof: Imagine n men and n women, from whom we wish
to choose n individuals to form a committee. Call a committee even
if it contains an even number of women, and odd otherwise. Then(
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is the number of odd committees. We wish to show that the number
of even commitees minus the number of odd commitees is 0 when n
is odd and (−1)n/2

(
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)
when n is even. We will do this by pairing

up even committees with odd committees in such a way that when
n is odd, there are no unpaired committees, while if n is even, there
are exactly

(
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)
unpaired committees, all of which are even if n/2

is even and odd if n/2 is odd. To accomplish this, first marry off
the men and women, and number the resulting couples from 1 to n.
If a committee consists completely of married couples, we don’t pair
it with another committee; otherwise, we pair it with the committee
obtained by replacing the lowest-numbered committtee member whose
spouse is not on the committee by that committee-member’s spouse.
(Here “lowest-numbered” could mean “with the lowest social security
number”, or anything else that lets us break ties.) This pairing clearly
pairs odd committees with even committees. If n is odd, there are
no unpaired committees. If n is even, then there are
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)
unpaired

committees, each of which is either even or odd according to the parity
of n/2.

C. Solve Brualdi, Chapter 5, problem 18 in two different ways: once using
problem 16 as a model, and once using problem 17 as a model.
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D. What is the coefficient of x3
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4 in the expansion of (x1−x2 +2x3−
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9?

The relevant term of the multinomial theorem is equal to the product
of (
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the total coefficient is thus (5040)× (−8) = −40320.

E. Brualdi, Chapter 5, problem 46. Retain all terms that are greater than
10−3; discard the rest.

Let x = 2 and y = 8. Since 0 ≤ |2| ≤ |8|, Theorem 5.6.1 applies:

(2+8)1/3 =
(

1/3
0

)
2081/3 +

(
1/3
1

)
2181/3−1 +

(
1/3
2

)
2281/3−2 +

(
1/3
3

)
2381/3−3 +(

1/3
4

)
2481/3−4+. . . = (1)(2)+(1/3)(2−1)+( (1/3)(−2/3)

2!
)(2−3)+( (1/3)(−2/3)(−5/3)

3!
)(2−5)+

( (1/3)(−2/3)(−5/3)(−8/3)
4!

)(2−7)+. . . = 2+1/6−1/72+5/2592−5/15552+. . ..
These terms decrease in absolute value and alternate in sign (leaving
aside the first two terms), and the fifth term is less than 10−3, so we
may approximate the infinite sum to within 10−3 by taking just the
first four terms: 2 + 1/6 − 1/72 + 5/2592 = 5585/2592 = 2.1547 . . ..
(The true value is 2.1544 . . ..)

F. Fix positive integers n, k ≥ 3. Consider a convex n-gon with vertices
labelled 1 through n. Call a convex k-gon, whose vertices are a subset
of the vertices of the n-gon, an internal k-gon if all of its sides are
diagonals of the n-gon.

(a) How many internal k-gons are there containing the vertex labelled
1?

The internal k-gons containing vertex 1 are in 1-1 correspondence
with the k-tuples (x1, x2, ..., xk) satisfying x1+x2+...+xk = n−k,
where each xi is a positive integer. (Think of xi as the number of
vertices of the n-gon that lie between successive vertices of the k-
gon.) Letting yi = xi−1, we see that these in turn correspond to k-
tuples (y1, y2, ..., xk) satisfying y1+y2+...+yk = n−2k where each
yi is a non-negative integer. Applying one-and-stars in the usual



way we see that the number of such k-tuples is
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(b) How many internal k-gons are there all together? (Hint: What do
you know ahead of time about the ratio between the answer to (a)
and the answer to (b)?)

Claim (a) is true about any particular vertex, and not just the

vertex labelled 1. So if we multiply
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vertices) and divide by k (to take into account the fact that each
k-gon has k different vertices), we get the correct answer, namely
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Alternative analysis: Let’s count, in two different ways, the num-
ber of ways to draw an internal k-gon and pick a vertex of that
k-gon and color it blue. On the one hand, the answer is Nb times
k, where Nb is the answer to problem (b), since there are Nb possi-
ble internal k-gons, each of which has k vertices that are available
to be colored blue. On the other hand, you could choose the blue
vertex first. There are n vertices of the original n-gon that could
be colored blue. For each choice of the blue vertex, there are Na

internal k-gons that contain that vertex, where Na is the answer
to part (a). (We proved this in the case where the special vertex is
vertex 1, but there’s nothing special about the vertex that we hap-
pened to call vertex 1; the answer is Na for any particular vertex.)
Hence Nbk = nNa, from which it follows that Nb = (n/k)Na.


