
Math 475, Problem Set #5: Solutions

A. Chapter 3, problem 28. Do part (a) in two different ways: once by
brute force (i.e., dynamic programming), and once by interpreting the
counting of routes in terms of multiset permutations. Likewise, do part
(b) in two different ways: once by dynamic programming, and once by
multiset permutations (making use of Brualdi’s hint as well). You may
use a calculator or computer to facilitate the dynamic programming
computation.

The brute force way to do part (a):

1 9 45 165 495 1287 3003 6435 12870 24310
1 8 36 120 330 792 1716 3432 6435 11440
1 7 28 84 210 462 924 1716 3003 5005
1 6 21 56 126 252 462 792 1287 2002
1 5 15 35 70 126 210 330 495 715
1 4 10 20 35 56 84 120 165 220
1 3 6 10 15 21 28 36 45 55
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1

The slick way to do part (a): A path consist of 9 Eastward steps and
8 Northward steps. So each path corresponds to a permutation of the
multiset {9 · E, 8 ·N}, of which there are(

9 + 8

8

)
= (17)(16)(15)(14)(13)(12)(11)(10)/(8)(7)(6)(5)(4)(3)(2)(1) = 24310.

The brute force way to do part (b):

1 9 45 165 495 1252 2793 5700 10910 19900
1 8 36 120 330 757 1541 2907 5210 8990
1 7 28 84 210 427 784 1366 2303 3780
1 6 21 56 126 217 357 582 937 1477
1 5 15 35 70 91 140 225 355 540
1 4 10 20 35 21 49 85 130 185
1 3 6 10 15 21 28 36 45 55
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1



The slick way to do part (b): The paths that we don’t want to count
— those that are unusable because they use the easterly block that is
submerged —- are those that go from the lower left (Home) to the 35,
go east to the 21, and then go to the upper right (Work). The number

of such paths is
(

4+3
3

)(
4+5
5

)
(where

(
4+3
3

)
counts the paths that start at

the lower left and then go 4 blocks east and 3 blocks north to arrive at
the 35, and

(
4+5
5

)
counts the paths that start at the 21 and then go

4 blocks east and 5 blocks north to arrive at the upper right). So the

number of bad paths is
(

7
3

)(
9
5

)
= (35)(126) = 4410 and the number of

good paths is 24310− 4410 = 19900.

B. Chapter 3, problem 40.

(a) We can see directly that this is C(n, k). Or, we can associate each
way of choosing k of the n sticks with a (k + 1)-tuple (x0, x1, . . . , xk)
where x0 is the number non-chosen stick to the left of the first chosen
stick, xk is the number non-chosen stick to the right of the last chosen
stick, and every other xi (1 ≤ i ≤ k − 1) is the number of non-chosen
sticks between the ith and i + 1st chosen sticks. This gives a (k + 1)-
tuple of non-negative integers with sum n− k, and every such (k + 1)-
tuple arises in this way from a unique way of choosing k of the n
sticks. So the number of ways of choosing k of the n sticks equals the
number of (k + 1)-tuples (x0, x1, . . . , xk) of non-negative integers with
x0 + x1 + . . . + xk = n − k. Putting n′ = k + 1 and r′ = n − k,
and applying what we already know about counting sequences of non-
negative integers with a prescribed sum, we see that the number of
such (k + 1)-tuples is C(n′ + r′ − 1, n′ − 1) = C(n, k).

(b) Associate each way of choosing k of the n sticks with a (k + 1)-
tuple (x0, x1, . . . , xk) where x0 is the number non-chosen stick to the
left of the first chosen stick, xk is the number non-chosen stick to the
right of the last chosen stick, and every other xi (1 ≤ i ≤ k − 1) is
the number of non-chosen sticks between the ith and i + 1st chosen
sticks. Saying that no two of the chosen sticks can be consecutive
is equivalent to saying that x1, x2, . . . , xk−1 are all positive. Defining
y0 = x0 and yk = xk and yi = xi − 1 for all 1 ≤ i ≤ k − 1, we
obtain a (k +1)-tuple (y0, y1, . . . , yk) of non-negative integers with sum
n− k− (k− 1) = n− 2k +1, and every such (k +1)-tuple arises in this



way from a unique way of choosing k of the n sticks with no two of the
chosen sticks being consecutive. Putting n′ = k+1 and r′ = n−2k+1,
and applying what we already know about counting sequences of non-
negative integers with a prescribed sum, we see that the number of
such (k + 1)-tuples is C(n′ + r′ − 1, n′ − 1) = C(n− k + 1, k). (Check:
If n = 2k − 1, there is a unique way of choosing k of the n sticks
so that no two are consecutive — namely, you must take every other
stick, starting with the leftmost — and sure enough, in this case we get
C(n− k + 1, k) = C(k, k) = 1.)

(c) Associate each way of choosing k of the n sticks with a (k+1)-tuple
(x0, x1, . . . , xk) where x0 is the number non-chosen stick to the left of
the first chosen stick, xk is the number non-chosen stick to the right of
the last chosen stick, and every other xi (1 ≤ i ≤ k − 1) is the number
of non-chosen sticks between the ith and i + 1st chosen sticks. Saying
that there must be at least l non-chosen sticks between any two of the
chosen sticks is equivalent to saying that x1, x2, . . . , xk−1 are all greater
than or equal to l. Defining y0 = x0 and yk = xk and yi = xi − l for
all 1 ≤ i ≤ k − 1, we obtain a (k + 1)-tuple (y0, y1, . . . , yk) of non-
negative integers with sum n− k− (k− 1)l = n− k + l− kl, and every
such (k + 1)-tuple arises in this way from a unique way of choosing
k of the n sticks with no two of the chosen sticks being consecutive.
Putting n′ = k + 1 and r′ = n − k + l − kl, and applying what we
already know about counting sequences of non-negative integers with
a prescribed sum, we see that the number of such (k + 1)-tuples is
C(n′ + r′ − 1, n′ − 1) = C(n + l − kl, k). (Check: If n = (k − 1)l + k,
there is a unique way of choosing k of the n sticks so that no two are
consecutive — namely, you must take the 1st stick, then the l + 2nd,
then the 2l+3rd, etc., up through the (k−1)l+kth — and sure enough,
in this case we get C(n + l − kl, k) = C(k, k) = 1.)

C. (a) Chapter 3, problem 48. Do this problem directly in terms of multiset
permutations. (Hint: Look at the special case m = n = 2. What
reversible operation might you perform on a string of 3 A’s and 2 B’s
that would turn it into a string of 2 A’s and at most 2 B’s?)

Given a permutation of m + 1 A’s and n B’s (of length m + n + 1), we
can delete the final A and all the B’s that come after it. What results



is a sequence that contains exactly m A’s and up to n B’s. Going in
reverse, given a sequence that contains exactly m A’s and up to n B’s,
we can tack an A on the end, along with as many B’s afterward as
are needed to make the total number of B’s equal to n. So there is a
one-to-one correspondence between the permutations of m + 1 A’s and
n B’s (of which there are

(
m+n+1

m+1

)
) and the permutations of m A’s and

at most n B’s.

(b) Use the addition principle (just once) to show that

p(m, m)+p(m+1, m)+p(m+2, m)+. . .+p(m+n, m) = p(m+n+1, m+1),

where p(·, ·) is as section 5.1.

Every path from (0, 0) to (m+n+1, m+1) eventually takes a diagonal-
downward step from the j = m column to the j = m + 1 column. Let
this step more specifically be (i, m) → (i + 1, m + 1). This is the last
diagonal step, and it is followed by vertical steps.

Now let S be the set of paths from (0, 0) to (m + n + 1, m + 1), and let
Si (m ≤ i ≤ m+n) be the set of paths from (0, 0) to (m+n+1, m+1)
whose last diagonal step goes from (i, m) to (i + 1, m + 1). Since the
sets Si are disjoint and have S as their union, we have

|S| = |Sm|+ |Sm+1|+ . . . + |Sm+n|.

But note that |Si| is just p(i, m), and |S| itself is p(m + n + 1, m + 1),
so the claim is proved.

(c) Explain the relationship between parts (a) and (b) of this problem.

The truth of (a) implies the truth of (b) and vice versa, because there
is a one-to-one correspondence between permutations of m A’s and k
B’s (on the one hand) and paths from (0, 0) to (m, m + k) (on the
other), by way of the construction discussed in class. In fact, the proof
we used in part (b) is just the pictoral version of the proof we used in
part (a), because removing the last diagonal edge of a path (and all the
vertical edges that come after it) is tantamount to removing the last A
in a multiset permutation (and all the B’s that come after it).

D. Chapter 3, problem 49. Find and fix Brualdi’s mistake. (Hint: Look
at the special case m = n = 1. What reversible operation might you



perform on a string of 2 A’s and 2 B’s that would turn it into a string
of at most 1 A and at most 1 B? If you’re stuck for ideas, take another
look at part (a) of the preceding problem!)

The correct formula is
(

m+n+2
m+1

)
− 1.

Given any sequence of m+1 A’s and n+1 B’s other than A · · ·AB · · ·B,
the first B precedes the last A, so if we remove the last A and all the
B’s that come after it, and we remove the first B and all the A’s that
come before it, we obtain a string containing at most m A’s and at
most n B’s. To reverse this operation, stick an A at the end, stick a
B at the beginning, and then stick extra B’s at the end and extra A’s
at the beginning so as to make the total number of A’s equal to m + 1
and the total number of B’s equal to n + 1. So there is one-to-one
correspondence between the permutations of m + 1 A’s and n + 1 B’s
(of which there are

(
m+n+2

m+1

)
) and the permutations of at most m A’s

and at most n B’s.

Brualdi probably subtracted 2 because he was thinking that the “empty
permutation” (with 0 A’s and 0 B’s) wouldn’t strike students as being
a valid permutation. Yet it really should count, if only so as to make
Theorem 3.4.3 valid for all choices of n1, . . . , nk, some of which may be
zero (so why not permit them all to be zero)?

E. Let f(n) be the nth Fibonacci number, so that f(1) = 1, f(2) = 2, and
f(n) = f(n− 1) + f(n− 2) for all n ≥ 3. Prove by induction that the
sum f(1) + f(2) + . . . + f(n) is equal to f(n + 2)− 2, for all n ≥ 1.

Let g(n) = f(1) + f(2) + f(3) + . . . + f(n).

Claim: g(n) = f(n + 2) − 2. Proof by induction: We have g(1) =
1 = 3 − 1 = f(3) − 2. Suppose the claim is true for n − 1, so that
g(n − 1) = f((n − 1) + 2) − 2 = f(n + 1) − 2. Then g(n) = f(1) +
f(2) + . . . + f(n) = (f(1) + . . . + f(n− 1)) + f(n) = g(n− 1) + f(n) =
(f(n + 1) − 2) + f(n) = (f(n) + f(n + 1) − 2 = f(n + 2) − 2, so the
claim holds for n as well. Hence by induction the claim is true for all
n.


