
Math 475, Problem Set #2
(due 2/5/04)

A. Section 2.4, problem 5.

Divide the integers from 1 to 3n into n triples: 1 through 3, 4 through
6, 7 through 9, etc. If n + 1 integers between 1 and 3n are chosen, two
of them must lie in the same triple; but these two must then differ by
at most 2.

B. Section 2.4, problem 9. Omit the last sentence.

It’s enough to solve the simpler-seeming problem in which the words
“(with no common person)” are removed. For, if we can find two
sets A and B with the desired property, then so do the smaller sets
A′ = A − (A ∩ B) and B′ = B − (A ∩ B), which have no person in
common.

So, for each of the 210 − 1 = 1023 non-empty subsets of the 10 people
present, consider the sum of the ages of the people in that set. The sum
must be between 1 and 600 inclusive (since each individual person’s age
is between 1 and 60). Thus there are 600 different age-sums that can
occur. Since there are 1023 non-empty subsets and only 600 age-sums,
two of the sub-sets must have the same age-sum. By the remark made
in the preceding paragraph, means that two groups of people in the
room with no person in common must have the same age-sum.

Note: Some of the students included the empty set along with the 1023
non-empty sets in their use of the pigeonhole principle. This is okay
too; it’ll still be the case that the two sets A and B with the same
age-sum (whose existence is guaranteed by the pigeonhole principle)
are distinct, so it’ll still be the case that the disjoint sets A′ and B′

are distinct, From this one can show that the sets A′ and B′ are both
non-empty. (If one of them were empty, its age-sum would be zero; but
then the age-sum of the other set would have to be zero, so the other
set would have to be empty too, contradicting the fact that the two
sets are distinct from one another.)

If the above seems at all confusing, make sure you understand the
difference between saying that two sets are distinct and saying that
two sets are disjoint.



C. Section 2.4, problem 14.

After 11 + 11 + 11 + 11 + 1 = 45 minutes, I am assured of having
picked at least a dozen pieces of fruit of the same kind. For, imagine
that I put the fruit I pick into bins, according to type. If the apple-bin
contains fewer than a dozen apples, and the banana-bin contains fewer
than a dozen bananas, and the orange-bin contains fewer than a dozen
oranges, and the pear-bin contains fewer than a dozen pears, then all
the bins taken together contain at most 11 + 11 + 11 + 11 = 44 pieces
of fruit. But after 45 minutes, I have picked 45 pieces of fruit.

D. (a) Find a sequence of 12 distinct numbers that contains no increasing
subsequence of length 4 or decreasing subsequence of length 5.

Example: 10,11,12,7,8,9,4,5,6,1,2,3. Group the terms into 4 blocks
of length 3. Every increasing subsequence must lie within a single
block, so it cannot have length 4. Every decreasing subsequence
must have all its terms in different blocks, so it cannot have length
5.

(b) Show that every sequence of 13 distinct numbers must contain ei-
ther an increasing subsequence of length 4 or a decreasing subse-
quence of length 5.

Suppose a1, a2, ..., a13 are distinct. Let Ik (resp. Dk) be the length
of the longest increasing (resp. decreasing) subsequence having ak

as its first term. If Ik takes only the values 1, 2, 3 and Dk takes
only the values 1, 2, 3, 4 then the pair (Ik, Dk) takes only 3×4 = 12
values. Hence two of the thirteen pairs (Ik, Dk) must be the same.
But, as was shown in class, this is impossible: for if ai < aj then
Ii > Ij, while if ai > aj then Di > Dj.

(c) Formulate and prove a generalization of the Erdös-Szekeres theo-
rem (Brualdi’s “Application 9”) in which the length of the desired
increasing subsequence is r + 1 and the length of the desired de-
creasing subsequence is s + 1. Your theorem should contain both
the Erdös-Szekeres theorem and part (b) of this problem as special
cases.

Every sequence of rs + 1 distinct terms contains an increasing
subsequence of length r + 1 or a decreasing subsequence of length
s + 1. Proof: Suppose a1, a2, ..., ars+1 are distinct. Let Ik (resp.



Dk) be the length of the longest increasing (resp. decreasing) sub-
sequence having ak as its first term. If Ik takes only the values
1, ..., r and Dk takes only the values 1, ..., s then the pair (Ik, Dk)
takes only rs values. Hence two of the rs pairs (Ik, Dk) must be
the same. But this is impossible. Hence, either there exists k with
Ik > r or there exists k with Dk > s.

Note: These solutions to (b) and (c) are based on the proof of
the Erdös-Szekeres theorem that I did in class; one could also
base solutions to these homework problems on the proof given in
Brualdi’s book.

E. Given 11 real numbers represented as infinite decimals, show that two
of them must agree at infinitely many decimal places.

There are only 10 decimal digits, so for each positive integer n, some
pair of the 11 numbers must have the same digit in the nth position
after the decimal point. Let Ai,j (with 1 ≤ i < j ≤ 11) be the set
of n’s such that the ith and jth numbers in the list agree in the nth
position. We have already seen that every positive integer n is in one of
the Ai,j’s; since the set of positive numbers is infinite, and since there
are only finitely many (specifically, 55) sets Ai,j under consideration,
one of these sets must be infinite. For that pair i, j, we see that the ith
and jth numbers agree infinitely often.

(We’ll learn in the next chapter why there are exactly 55 ways to choose
integers i, j with 1 ≤ i < j ≤ 11.)

Alternate proof: Suppose all the sets Ai,j are finite. Then their union
must be finite also, since there are only finitely many of these sets. But
the union of the Ai,j is the infinite set {1, 2, 3, . . .}. This contradiction
shows that one of the sets Ai,j is infinite.

(Note that the sets Ai,j are not disjoint; so this problem is a bit different
from the standard set-up for the pigeonhole principle, in which each
pigeon gets assigned to one and only one pigeonhole.)


