
Math 475, Problem Set #11: Answers

A. Chapter 8, problem 2.

We can put these arrays into one-to-one correspondence with acceptable
sequences of +1’s and −1’s. Given such an array, define ak (for all k
between 1 and 2n) to be +1 if k appears in the first row and −1 if k
appears in the second row. E.g., the array[

1 3 4 6
2 5 7 8

]

corresponds to the sequence +1,−1, +1, +1,−1, +1,−1,−1. This se-
quence must contain n +1’s and n −1’s, since the array contains n
entries in its first row and n entries in its second row. Furthermore,
the sequence must be acceptable (in the sense defined on page 268).
For, suppose the partial sum a1 + . . . + ak were negative. Let s (re-
spectively, t) be the number of positive (respectively, negative) terms
in the partial sequence a1, . . . , ak. Then the tth column of the array
contains a k in its second row and an entry larger than k in its first row,
contradicting the condition stated in the problem. Hence the sequence
a1, . . . , a2n is acceptable. Conversely, given any acceptable sequence of
n +1’s and n −1’s, we can create a valid array by listing in the first
row (in increasing order) all the k’s for which ak = +1 and listing in
the second row (in increasing order) all the k’s for which ak = −1.

So the number of arrays satisfying the stated conditions equals the
number of acceptable sequences, which is Cn. ( 1

n+1

(
2n
n

)
and (2n!)

n!(n+1)!
are

other acceptable answers.)

B. Find (and prove) a formula for the number of integer sequences a1, a2, . . . , an

with 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ n and ak ≥ k for all k.

Guessing the formula: We systematically list all the possibilities, for
some small values of n. E.g., when n = 1, the only possibility is
a1 = 1. When n = 2, there are two possibilities: (a1, a2) = (1, 2)
and (a1, a2) = (2, 2). For n > 2, we need to be systematic. Here’s an
example of how to be systematic when n = 3:
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a1 can be 1, 2, or 3.

If a1 = 1, a2 can be 2 or 3.

If a1 = 1 and a2 = 2, then a3 can only be 3.

If a1 = 1 and a2 = 3, then a3 can only be 3.

If a1 = 2, a2 can be 2 or 3.

If a1 = 2 and a2 = 2, then a3 can only be 3.

If a1 = 2 and a2 = 3, then a3 can only be 3.

If a1 = 3, a2 can only be 3.

If a1 = 3 and a2 = 3, then a3 can only be 3.

So the possibilities for (a1, a2, a3) are (1,2,3), (1,3,3), (2,2,3), (2,3,3),
and (3,3,3) (five possibilities all told). Similarly, for n = 4, one can
check that the possibilities for (a1, a2, a3, a4) are (1,2,3,4), (1,2,4,4),
(1,3,3,4), (1,3,3,4), (1,4,4,4), (2,2,3,4), (2,2,4,4), (2,3,3,4), (2,3,4,4),
(2,4,4,4), (3,3,3,4), (3,3,4,4), (3,4,4,4), and (4,4,4,4) (fourteen possi-
bilities all told). So, the number of possibilities goes 1, 2, 5, 14, . . . as
n goes from 1 to infinity, and it’s natural to conjecture that the answer
is Cn.

Proving the formula: We can put these sequences into one-to-one cor-
respondence with the paths discussed in the Example on page 271 that
stay above diagonal. For example, in the case n = 4 (shown on page
271), consider the path P that goes north, north, east, north, east,
north, east, east. If we look under this path (more precisely, if we look
in the region bounded between the path P and the “reference path”
P0 that goes east, east, east, east, north, north, north, north), we see a
stack of 2 squares, and to the right of that, a stack of 3 squares, and to
the right of that, a stack of 4 squares, and to the right of that, a stack
of 4 squares. This gives us the sequence 2, 3, 4, 4.

More generally, if we have a path P consisting of n eastward steps
and n northward steps, we can look at the height of the kth eastward
step in the picture (which is equal to the number of northward steps
that precede the kth eastward steps), and call this ak. Then we have
a1 ≤ a2 ≤ . . . ≤ an, and moreover, the fact that the path P never
crosses below the diagonal implies that ak ≥ k for k = 1, 2, . . . , n.
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Conversely, every sequence 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ n with a1 ≥ 1,
a2 ≥ 2, . . . , an ≥ n gives a path P that goes from Home to Office
without ever crossing below the diagonal line that joins Home to Office.

Therefore, the number of sequences a1, . . . , an satisfying the stated con-
ditions equals the number of paths from Home to Office that never go
below the diagonal, which we know is equal to Cn.

C. Repeat the Example from the middle of page 270, but this time assume
that the cash register starts with a single 50 cent piece (rather than
starting empty). We still assume that there are 2n people in line to get
into the theatre, that admission costs 50 cents, that n of the people in
line have a 50 cent piece and n of them have a 1 dollar bill. In how
many ways can the people line up so that whenever a person with a 1
dollar bill buys a ticket, the box office has a 50 cent piece in order to
make change?

For 1 ≤ i ≤ 2n, let ai be +1 if the ith person in line has a 50 cent piece
and −1 otherwise, so that

∑2n
i=1 ai = 0. Then the cashier will always

be able to make change right away provided that no partial sum of
the ai sequence is less than −1. Call a sequence of n +1’s and n −1’s
inadmissable if one of its partial sums is less than −1, and admissable
otherwise. We can show that the number of inadmissable sequences
is

(
2n

n−2

)
. For, suppose the sequence a1, . . . , a2n is inadmissable. Then

there must exist a smallest k such that the partial sum a1+a2+ . . .+ak

is less than −1. Because k is the smallest such value, we have a1 +a2 +
. . . + ak−1 = −1 and ak = −1. We now reverse the signs of each of
the first k terms. The resulting sequence a′1, a

′
2, . . . , a

′
2n is a sequence

of (n + 2) +1’s and (n − 2) −1’s. The process is reversible, just as in
the Example. So there are as many inadmissable sequences as there
sequences of (n + 2) +1’s and (n − 2) −1’s. That is, the number of

inadmissable sequences is
(

2n
n+2

)
. Since the total number of sequences

of n +1’s and n −1’s is
(

2n
n

)
, the number of admissable sequences is(

2n
n

)
−

(
2n

n+2

)
.

Alternative solution: Define “admissable” sequences as in the previous
paragraph. If we are given an admissable sequence, so that all the
partial sums are ≥ −1, sticking an extra +1 at the front and an extra
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−1 at the end gives rise to an acceptable sequence (since all the partial
sums are now ≥ 0, and the sum of all the terms is still 0). Conversely,
every acceptable sequence must start with a +1 and end with a −1, and
removing these two terms gives rise to an admissable sequence. Thus
there is a one-to-one correspondence between the admissable sequences
containing n +1’s and n −1’s and the acceptable sequences containing
(n+1) +1’s and (n+1) −1’s. Thus the number of admissable sequences

is Cn+1, the n + 1st Catalan number. (It can be checked that
(

2n
n

)
−(

2n
n+2

)
= 1

n+2

(
2n+2
n+1

)
, so the two methods have given the same answer.)

D. Chapter 8, problem 7. Express both hn and
∑n

k=0 hk as polynomials in
n in the ordinary way.

The difference table for hn is

1 −1 3 10
−2 4 7

6 3
−3

So we have hn = 1
(

n
0

)
− 2

(
n
1

)
+6

(
n
2

)
− 3

(
n
3

)
= −1

2
n3 + 9

2
n2− 6n+1 and∑n

k=0 hk = 1
(

n+1
1

)
−2

(
n+1

2

)
+6

(
n+1

3

)
−3

(
n+1

4

)
= −1

8
n4+5

4
n3− 7

8
n2− 5

4
n+1.

E. Chapter 8, problem 8. Express
∑n

k=1 k5 as a polynomial in n in the
ordinary way.

Note that
∑n

k=1 k5 =
∑n

k=0 k5.

The difference table for fifth powers is

0 1 32 243 1024 3125
1 31 211 781 2101

30 180 570 1320
150 390 750

240 360
120

so the polynomial for adding fifth powers is 0
(

n+1
1

)
+1

(
n+1

2

)
+30

(
n+1

3

)
+

150
(

n+1
4

)
+ 240

(
n+1

5

)
+ 120

(
n+1

6

)
= 1

6
n6 + 1

2
n5 + 5

12
n4 − 1

12
n2.
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