Math 475, Problem Set \#11: Answers

A. Chapter 8, problem 2.

We can put these arrays into one-to-one correspondence with acceptable sequences of +1 's and -1 's. Given such an array, define a_{k} (for all k between 1 and $2 n$) to be +1 if k appears in the first row and -1 if k appears in the second row. E.g., the array

$$
\left[\begin{array}{llll}
1 & 3 & 4 & 6 \\
2 & 5 & 7 & 8
\end{array}\right]
$$

corresponds to the sequence $+1,-1,+1,+1,-1,+1,-1,-1$. This sequence must contain $n+1$'s and $n-1$'s, since the array contains n entries in its first row and n entries in its second row. Furthermore, the sequence must be acceptable (in the sense defined on page 268). For, suppose the partial sum $a_{1}+\ldots+a_{k}$ were negative. Let s (respectively, t) be the number of positive (respectively, negative) terms in the partial sequence a_{1}, \ldots, a_{k}. Then the t th column of the array contains a k in its second row and an entry larger than k in its first row, contradicting the condition stated in the problem. Hence the sequence $a_{1}, \ldots, a_{2 n}$ is acceptable. Conversely, given any acceptable sequence of $n+1$'s and $n-1$'s, we can create a valid array by listing in the first row (in increasing order) all the k 's for which $a_{k}=+1$ and listing in the second row (in increasing order) all the k 's for which $a_{k}=-1$.

So the number of arrays satisfying the stated conditions equals the number of acceptable sequences, which is $C_{n} \cdot\left(\frac{1}{n+1}\binom{2 n}{n}\right.$ and $\frac{(2 n!)}{n!(n+1)!}$ are other acceptable answers.)
B. Find (and prove) a formula for the number of integer sequences $a_{1}, a_{2}, \ldots, a_{n}$ with $1 \leq a_{1} \leq a_{2} \leq \ldots \leq a_{n} \leq n$ and $a_{k} \geq k$ for all k.
Guessing the formula: We systematically list all the possibilities, for some small values of n. E.g., when $n=1$, the only possibility is $a_{1}=1$. When $n=2$, there are two possibilities: $\left(a_{1}, a_{2}\right)=(1,2)$ and $\left(a_{1}, a_{2}\right)=(2,2)$. For $n>2$, we need to be systematic. Here's an example of how to be systematic when $n=3$:
a_{1} can be 1,2 , or 3 .
If $a_{1}=1, a_{2}$ can be 2 or 3 .
If $a_{1}=1$ and $a_{2}=2$, then a_{3} can only be 3 .
If $a_{1}=1$ and $a_{2}=3$, then a_{3} can only be 3 .
If $a_{1}=2, a_{2}$ can be 2 or 3 .
If $a_{1}=2$ and $a_{2}=2$, then a_{3} can only be 3 .
If $a_{1}=2$ and $a_{2}=3$, then a_{3} can only be 3 .
If $a_{1}=3, a_{2}$ can only be 3 .
If $a_{1}=3$ and $a_{2}=3$, then a_{3} can only be 3 .
So the possibilities for $\left(a_{1}, a_{2}, a_{3}\right)$ are $(1,2,3),(1,3,3),(2,2,3),(2,3,3)$, and $(3,3,3)$ (five possibilities all told). Similarly, for $n=4$, one can check that the possibilities for $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ are $(1,2,3,4),(1,2,4,4)$, $(1,3,3,4),(1,3,3,4),(1,4,4,4),(2,2,3,4),(2,2,4,4),(2,3,3,4),(2,3,4,4)$, $(2,4,4,4),(3,3,3,4),(3,3,4,4),(3,4,4,4)$, and $(4,4,4,4)$ (fourteen possibilities all told). So, the number of possibilities goes $1,2,5,14, \ldots$ as n goes from 1 to infinity, and it's natural to conjecture that the answer is C_{n}.
Proving the formula: We can put these sequences into one-to-one correspondence with the paths discussed in the Example on page 271 that stay above diagonal. For example, in the case $n=4$ (shown on page 271), consider the path P that goes north, north, east, north, east, north, east, east. If we look under this path (more precisely, if we look in the region bounded between the path P and the "reference path" P_{0} that goes east, east, east, east, north, north, north, north), we see a stack of 2 squares, and to the right of that, a stack of 3 squares, and to the right of that, a stack of 4 squares, and to the right of that, a stack of 4 squares. This gives us the sequence $2,3,4,4$.
More generally, if we have a path P consisting of n eastward steps and n northward steps, we can look at the height of the k th eastward step in the picture (which is equal to the number of northward steps that precede the k th eastward steps), and call this a_{k}. Then we have $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$, and moreover, the fact that the path P never crosses below the diagonal implies that $a_{k} \geq k$ for $k=1,2, \ldots, n$.

Conversely, every sequence $1 \leq a_{1} \leq a_{2} \leq \ldots \leq a_{n} \leq n$ with $a_{1} \geq 1$, $a_{2} \geq 2, \ldots, a_{n} \geq n$ gives a path P that goes from Home to Office without ever crossing below the diagonal line that joins Home to Office.

Therefore, the number of sequences a_{1}, \ldots, a_{n} satisfying the stated conditions equals the number of paths from Home to Office that never go below the diagonal, which we know is equal to C_{n}.
C. Repeat the Example from the middle of page 270, but this time assume that the cash register starts with a single 50 cent piece (rather than starting empty). We still assume that there are $2 n$ people in line to get into the theatre, that admission costs 50 cents, that n of the people in line have a 50 cent piece and n of them have a 1 dollar bill. In how many ways can the people line up so that whenever a person with a 1 dollar bill buys a ticket, the box office has a 50 cent piece in order to make change?

For $1 \leq i \leq 2 n$, let a_{i} be +1 if the i th person in line has a 50 cent piece and -1 otherwise, so that $\sum_{i=1}^{2 n} a_{i}=0$. Then the cashier will always be able to make change right away provided that no partial sum of the a_{i} sequence is less than -1 . Call a sequence of $n+1$'s and $n-1$'s inadmissable if one of its partial sums is less than -1 , and admissable otherwise. We can show that the number of inadmissable sequences is $\binom{2 n}{n-2}$. For, suppose the sequence $a_{1}, \ldots, a_{2 n}$ is inadmissable. Then there must exist a smallest k such that the partial sum $a_{1}+a_{2}+\ldots+a_{k}$ is less than -1 . Because k is the smallest such value, we have $a_{1}+a_{2}+$ $\ldots+a_{k-1}=-1$ and $a_{k}=-1$. We now reverse the signs of each of the first k terms. The resulting sequence $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{2 n}^{\prime}$ is a sequence of $(n+2)+1$'s and $(n-2)-1$'s. The process is reversible, just as in the Example. So there are as many inadmissable sequences as there sequences of $(n+2)+1$'s and $(n-2)-1$'s. That is, the number of inadmissable sequences is $\binom{2 n}{n+2}$. Since the total number of sequences of $n+1$'s and $n-1$'s is $\binom{2 n}{n}$, the number of admissable sequences is $\binom{2 n}{n}-\binom{2 n}{n+2}$.
Alternative solution: Define "admissable" sequences as in the previous paragraph. If we are given an admissable sequence, so that all the partial sums are ≥-1, sticking an extra +1 at the front and an extra
-1 at the end gives rise to an acceptable sequence (since all the partial sums are now ≥ 0, and the sum of all the terms is still 0). Conversely, every acceptable sequence must start with a +1 and end with a -1 , and removing these two terms gives rise to an admissable sequence. Thus there is a one-to-one correspondence between the admissable sequences containing $n+1$'s and $n-1$'s and the acceptable sequences containing $(n+1)+1$'s and ($n+1$) -1's. Thus the number of admissable sequences is C_{n+1}, the $n+1$ st Catalan number. (It can be checked that $\binom{2 n}{n}-$ $\binom{2 n}{n+2}=\frac{1}{n+2}\binom{2 n+2}{n+1}$, so the two methods have given the same answer.)
D. Chapter 8, problem 7. Express both h_{n} and $\sum_{k=0}^{n} h_{k}$ as polynomials in n in the ordinary way.
The difference table for h_{n} is

| 1 | | -1 | | 3 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -2 | | 4 | | 7 | |

So we have $h_{n}=1\binom{n}{0}-2\binom{n}{1}+6\binom{n}{2}-3\binom{n}{3}=-\frac{1}{2} n^{3}+\frac{9}{2} n^{2}-6 n+1$ and $\sum_{k=0}^{n} h_{k}=1\binom{n+1}{1}-2\binom{n+1}{2}+6\binom{n+1}{3}-3\binom{n+1}{4}=-\frac{1}{8} n^{4}+\frac{5}{4} n^{3}-\frac{7}{8} n^{2}-\frac{5}{4} n+1$.
E. Chapter 8, problem 8. Express $\sum_{k=1}^{n} k^{5}$ as a polynomial in n in the ordinary way.
Note that $\sum_{k=1}^{n} k^{5}=\sum_{k=0}^{n} k^{5}$.
The difference table for fifth powers is

0		1		32		243		1024	3125	
	1		31		211		781		2101	
	30		180		570		1320			
		150		390		750				
				240		360				
						120				

so the polynomial for adding fifth powers is $0\binom{n+1}{1}+1\binom{n+1}{2}+30\binom{n+1}{3}+$ $150\binom{n+1}{4}+240\binom{n+1}{5}+120\binom{n+1}{6}=\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2}$.

