Math 475, Problem Set \#9

(due 4/6/06)
A. Brualdi, chapter 7, problem 28, parts (b), (c), and (e).
B. Brualdi, chapter 7, problem 29, parts (b), (d), and (e). (Note for part (b) that 0 is a multiple of 3 .)
C. Brualdi, chapter 7, problem 30, part (d).
D. Let f_{n} be the Fibonacci sequence as defined at the top of page 196. In this problem you will use the method of section 7.4 to solve the nonhomogeneous recurrence relation $h_{n}=h_{n-1}+f_{n}$ with the initial condition $h_{0}=0$.
(a) Let $g(x)=\sum_{n=0}^{\infty} h_{n} x^{n}$, and show that $g(x)=\frac{x}{(1-x)\left(1-x-x^{2}\right)}$.
(b) By doing a partial fraction expansion of $g(x)$ of the form $g(x)=$ $A /(1-x)+(B+C x) /\left(1-x-x^{2}\right)$, derive a formula for h_{n} in terms of Fibonacci numbers.
(c) Check your answer by comparing with formula (7.8) in Brualdi.
E. Brualdi, chapter 7, problem 32.

