Math 475, Problem Set \#6
(due $3 / 2 / 06$)
A. (a) For each point (a, b) with a, b non-negative integers satisfying $a+b \leq$ 8 , count the paths from $(0,0)$ to (a, b) where the legal steps from (i, j) are to $(i+2, j),(i, j+2)$, and $(i+1, j+1)$.
(b) Compute the coefficients of $\left(x^{2}+x+1\right)^{n}$ for $n=0,1,2,3,4$.
(c) Based on parts (a) and (b), formulate a precise conjecture of the form "for all non-negative integers a and b, the number of paths from $(0,0)$ to (a, b) is equal to the coefficient of \ldots in the polynomial \ldots..
B. Chapter 5, problem 12.
C. Solve Brualdi, Chapter 5, problem 18 in two different ways: once using problem 16 as a model, and once using problem 17 as a model.
D. What is the coefficient of $x_{1}^{3} x_{2}^{3} x_{3} x_{4}^{2}$ in the expansion of $\left(x_{1}-x_{2}+2 x_{3}-\right.$ $\left.2 x_{4}\right)^{9}$?
E. Brualdi, Chapter 5, problem 46. Retain all terms that are greater than 10^{-3}; discard the rest.
F. Fix positive integers $n, k \geq 3$. Consider a convex n-gon with vertices labelled 1 through n. Call a convex k-gon, whose vertices are a subset of the vertices of the n-gon, an internal k-gon if all of its sides are diagonals of the n-gon.
(a) How many internal k-gons are there containing the vertex labelled 1?
(b) How many internal k-gons are there all together? (Hint: What do you know ahead of time about the ratio between the answer to (a) and the answer to (b)?)

