Math 475, Problem Set \#11

(due $4 / 20 / 06$)

A. Chapter 8, problem 2.

B. Find (and prove) a formula for the number of integer sequences $a_{1}, a_{2}, \ldots, a_{n}$ with $1 \leq a_{1} \leq a_{2} \leq \ldots \leq a_{n} \leq n$ and $a_{k} \geq k$ for all k.
C. Repeat the Example from the middle of page 270, but this time assume that the cash register starts with a single 50 cent piece (rather than starting empty). We still assume that there are $2 n$ people in line to get into the theatre, that admission costs 50 cents, that n of the people in line have a 50 cent piece and n of them have a 1 dollar bill. In how many ways can the people line up so that whenever a person with a 1 dollar bill buys a ticket, the box office has a 50 cent piece in order to make change?
D. Chapter 8, problem 7. Express both h_{n} and $\sum_{k=0}^{n} h_{k}$ as polynomials in n in the ordinary way.
E. Chapter 8, problem 8. Express $\sum_{k=1}^{n} k^{5}$ as a polynomial in n in the ordinary way.

By the way (maybe I shouldn't have to say this, but it can't hurt): For problems D and E, a good way to make sure that you haven't made some arithmetical error en route to your final answer is to check it by plugging in suitable values of n. I am often surprised by how few students take the time to do this, even though it's a quick way to catch mistakes and thereby boost your homework score.

