A. Consider the sequence $1,2,8,40,224,1344,8448,54912, \ldots$ defined by the initial condition $a_{1}=1$ and the recurrence relation $a_{n}=2\left(a_{1} a_{n-1}+\right.$ $a_{2} a_{n-2}+\ldots+a_{n-1} a_{1}$) (valid for all $n \geq 2$). Find (and prove) a general formula for a_{n}.
B. Chapter 7, problem 22. (Hint: Label the points 1 through $2 n$. Let $h_{n, k}$ be the number of ways to join the points in pairs so that the resulting line segments do not intersect, where point 1 is joined to point k. Show that $h_{n, k}=0$ when k is odd, and find a formula for $h_{n, k}$ in terms of $h_{1}, h_{2}, \ldots, h_{n-1}$ when k is even. Use this to write h_{n} as a sum of products of earlier terms of the sequence.) You may find it convenient to define $h_{0}=1$.
C. Chapter 7, problem 41.
D. Chapter 7, problem 42 (c).
E. Chapter 7, problem 44.
F. Chapter 7, problem 46.

