Math 192r, Problem Set \#9

(due 10/18/01)

1. For various small values of n (1 through 5 , at least), determine the average number of times that a $2 n$-step Dyck path returns to the horizontal axis (counting $(2 n, 0)$ as a return but not $(0,0)$), and conjecture a general formula. Compute at least one more value to confirm (or disprove) your conjecture. (I strongly encourage you to do this problem symbolically, if possible, using a system like Maple or Mathematica to generate and study a list whose elements are representations of the Dyck paths. Take advantage of the recursive construction of Dyck paths discussed in class, in combination with the list-manipulation operations that are available to you in these computer algebra systems.)
2. Let T_{n} be the number of domino tilings of a 3 -by- $2 n$ cylinder, obtained by gluing together the left and right sides (of length 3) of a 3 -by- $2 n$ rectangle.
(a) Find a generating function for the sequence $T_{1}, T_{2}, T_{3}, \ldots$.
(b) Since the sequence satisfies a linear recurrence, there is a natural way to run the recurrence backward, obtaining values for T_{0}, T_{-1}, T_{-2}, etc. Compute T_{n} for all n between -10 and +10 .
(c) Formulate a conjecture based on your data.
(d) Prove your conjecture.
