Math 192r, Problem Set \#8

(due 10/16/01)

1. Define the diagonal of a two-variable generating function

$$
F(x, y)=\sum_{m, n} a_{m, n} x^{m} y^{n}
$$

as the generating function

$$
D(t)=\sum_{n} a_{n, n} t^{n} .
$$

It is a theorem (which we will not have time to prove) that the diagonal of any two-variable rational generating function is an algebraic generating function. Verify this claim in the particular case $F(x, y)=1 /(1-x-y)=\sum_{m, n} \frac{(m+n)!}{m!n!} x^{m} y^{n}$ by expressing the diagonal $D(t)$ as an algebraic function. Give as good a justification of your formula as you can.
2. Call a sequence of +1 's 0 's, and -1 's favorable if every partial sum is non-negative and the total sum is 0 . Let $f(n)$ be the number of favorable sequences of length n. Express the generating function $\sum_{n} f(n) x^{n}$ as an algebraic function of x.

