Math 192r, Problem Set \#5

(due 10/4/01)

1. There is a unique polynomial of degree d such that $f(k)=2^{k}$ for $k=0,1, \ldots, d$. What is $f(d+1)$? What is $f(-1)$?
2. One basis for the space of polynomials of degree less than d is the monomial basis $1, t, t^{2}, \ldots, t^{d-1}$. Another is the shifted monomial basis $1,(t+1),(t+1)^{2}, \ldots,(t+1)^{d-1}$. Call these bases u_{1}, \ldots, u_{d} and v_{1}, \ldots, v_{d} respectively.
(a) Derive a formula for the entries of the change-of-basis matrix M expressing the u_{i} 's as linear combinations of the v_{j} 's.
(b) Derive a formula for the entries of the change-of-basis matrix N expressing the v_{j} 's as linear combinations of the u_{i} 's.
(c) From the description of M and N as basis-change matrices, we know that $M N=N M=I$. Forgetting for the moment what M and N mean, rewrite the assertions $M N=N M=I$ as binomial coefficient identities, and prove them either algebraically or bijectively.
