Math 192r, Problem Set \#4
 (due 10/2/01)

Let a_{n} be the number of domino tilings of a 3 -by- $2 n$ rectangle, and let b_{n} be the number of domino tilings of a 3 -by- $(2 n+1)$ rectangle from which a corner square has been removed. We showed in class that $a_{n}=a_{n-1}+2 b_{n-1}$ and $b_{n}=a_{n-1}+3 b_{n-1}$ for all $n \geq 2$.

1. Introduce

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

and

$$
B(x)=b_{0}+b_{1} x+b_{x} x^{2}+\ldots .
$$

Write down two algebraic relations between $A(x)$ and $B(x)$ that represent the two recurrence relations (taking care to incorporate the boundary conditions correctly), and solve for $A(x)$ and $B(x)$.
2. We also saw in class that

$$
\binom{a_{n}}{b_{n}}=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right)^{n}\binom{1}{1}
$$

Use linear algebra to derive a formula for a_{n}.

Please be sure to write down how many hours you spent working on the assignment, and whom you worked with.

