1. For $n \geq 0$ let $A(n)=\sum_{n / 2 \leq k \leq n} 2^{k}$ (where the sum is only over integer values of k), so that $A(0)=1, A(1)=2, A(2)=6$, etc. Extend $A(n)$ to the negative domain in two different ways, and check that they agree: first, by finding a formula for $A(n)$ when n is positive; and second, by applying the polytope reciprocity theorem.
2. For $n \geq 0$, let $f(n)$ be the number of integer sequences of length $n+1$ consisting of 1 's, 2 's, 3 's, and 4's, such that the first term is 1 , the last term is 1 , and any two consecutive terms differ by 0 or ± 1. Thus $f(0)=1, f(1)=1, f(2)=2, f(3)=4, f(4)=9$, etc. Show that this sequence satisfies a linear recurrence with constant coefficients, so that $f(-1), f(-2), f(-3), \ldots$ have natural values. Interpret these values combinatorially.
