1. In problem $\# 3$ of assignment $\# 17$, multivariate polynomials

$$
D\left(x_{1}, x_{3}, \ldots, x_{2 n+1} ; y_{2}, y_{4}, \ldots, y_{2 n}\right)
$$

were defined. Find an infinite acyclic directed graph with special vertices $\ldots, v_{-1}, v_{0}, v_{1}, \ldots$ where all edges are assigned weight 1 and vertices are assigned weights according to some scheme that you must devise, so that for all integers $i \leq j$ the sum of the weights of the paths from v_{i} to v_{j} is $D\left(x_{2 i+1}, x_{2 i+3}, \ldots, x_{2 j+1} ; y_{2 i+2}, y_{2 i+4}, \ldots, y_{2 j}\right)$. Include a proof that your answer is correct.
2. Consider an infinite array with tilted upper boundary like the one shown below:

Here the entries w_{i}, x_{i}, y_{i} are formal indeterminates, and the entries marked with asterisks are determined by the diamond rule as in assignment \#17; that is, whenever the array contains four entries arranged like

we must have $a d-b c=1$. Some experimentation will probably convince you that each entry in the table is a Laurent polynomial in the variables w_{i}, x_{i}, y_{i}, and that moreover each coefficient in this polynomial equals +1 . Show how for each such Laurent polynomial, the Laurent monomials that participate correspond to the perfect matchings of some graph
(just as was the case in assignment \#17). Give a concrete description of the graphs and the correspondence between matchings and monomials (including either a proof or convincingly large examples).

