1. Let $P(n)$ and $Q(n)$ denote the numerator and denominator obtained when the continued fraction

$$
x_{1}+\left(y_{1} /\left(x_{2}+\left(y_{2} /\left(x_{3}+\left(y_{3} / \cdots+\left(y_{n-2} /\left(x_{n-1}+\left(y_{n-1} / x_{n}\right)\right)\right) \cdots\right)\right)\right)\right)\right)
$$

is expressed as an ordinary fraction. Thus $P(n)$ and $Q(n)$ are polynomials in the variables x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n-1}.
(a) By examining small cases, give a conjectural bijection between the terms of the polynomial $P(n)$ and domino tilings of the 2-by- n rectangle, and a similar bijection between the terms of the polynomial $Q(n)$ and domino tilings of the 2-by- $(n-1)$ rectangle, as well as a conjecture that gives all the coefficients.
(b) Prove your conjectures from part (a) by induction on n.
2. Let $R(n)$ denote the determinant of the n-by- n matrix M whose i, j th entry is equal to

$$
\begin{cases}x_{i} & \text { if } j=i, \\ y_{i} & \text { if } j=i+1, \\ z_{i-1} & \text { if } j=i-1, \\ 0 & \text { otherwise }\end{cases}
$$

(a) By examining small cases, give a conjectural bijection between the terms of the polynomial $R(n)$ and domino tilings of the 2-byn rectangle, and a conjecture for the coefficients.
(b) Prove your conjectures from part (a) by induction on n.
3. Consider a triangular array in which the top row is of length n, the next row is of length $n-1$, etc., with each row (other than the last) being centered above the row beneath. Whenever such an array contains four entries arranged like
(more)

```
    w
x
y
z
```

we'll say that these entries satisfy the diamond condition if $w z-x y=1$. If the diamond condition is satisfied everywhere, we'll say that the array is a diamond pattern. Thus, for instance, the array

with a, b, c, d, e, f, g non-zero is a diamond pattern iff $h=(e f+1) / b$, $i=(f g+1) / c$, and $j=(h i+1) / f$.
Note that if the top two rows of a diamond pattern contain no zeroes, there is a unique way to extend down. This is also true if the top two rows consist of distinct formal indeterminates. Let $D\left(x_{1}, x_{3}, \ldots, x_{2 n+1}\right.$; $\left.y_{2}, y_{4}, \ldots, y_{2 n}\right)$ be the bottom entry of a diamond pattern whose first row is $x_{1}, x_{3}, \ldots, x_{2 n+1}$ and whose second row is $y_{2}, y_{4}, \ldots, y_{2 n}$. By examining small cases, you will find that $D\left(x_{1}, x_{3}, \ldots, x_{2 n+1} ; y_{2}, y_{4}, \ldots, y_{2 n}\right)$ can always be expressed as a multivariate Laurent polynomial. Give a conjectural bijection between the terms of this Laurent polynomial and domino tilings of the 2 -by- $(2 n-2)$ rectangle (for $n \geq 1$). Include also a conjecture governing the coefficients.
4. Repeat the problem, but with the diamond condition $a d-b c=1$ replaced by the "frieze condition" $a d-b c=-1$. Let $F\left(x_{1}, x_{3}, \ldots, x_{2 n+1}\right.$; $\left.y_{2}, y_{4}, \ldots, y_{2 n}\right)$ be the bottom entry of a frieze pattern whose first row is $x_{1}, x_{3}, \ldots, x_{2 n+1}$ and whose second row is $y_{2}, y_{4}, \ldots, y_{2 n}$. By examining small cases, you will find that $F\left(x_{1}, x_{3}, \ldots, x_{2 n+1} ; y_{2}, y_{4}, \ldots, y_{2 n}\right)$ can always be expressed as a multivariate Laurent polynomial. Give a conjectural bijection between the terms of this Laurent polynomial and domino tilings of the 2 -by- $(2 n-2)$ rectangle (for $n \geq 1$). Include also a conjecture governing the coefficients.

